{"title":"根系统贝塞尔函数在秩趋于无穷大时的极限","authors":"Dominik Brennecken, Margit Rösler","doi":"10.1016/j.indag.2024.05.004","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behaviour of Bessel functions associated to root systems of type and type with positive multiplicities as the rank tends to infinity. In both cases, we characterize the possible limit functions and the Vershik–Kerov type sequences of spectral parameters for which such limits exist. In the type case, this gives a new and very natural approach to recent results by Assiotis and Najnudel in the context of -ensembles in random matrix theory. These results generalize known facts about the approximation of the positive-definite Olshanski spherical functions of the space of infinite-dimensional Hermitian matrices over (with the action of the associated infinite unitary group) by spherical functions of finite-dimensional spaces of Hermitian matrices. In the type B case, our results include asymptotic results for the spherical functions associated with the Cartan motion groups of non-compact Grassmannians as the rank goes to infinity, and a classification of the Olshanski spherical functions of the associated inductive limits.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limits of Bessel functions for root systems as the rank tends to infinity\",\"authors\":\"Dominik Brennecken, Margit Rösler\",\"doi\":\"10.1016/j.indag.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the asymptotic behaviour of Bessel functions associated to root systems of type and type with positive multiplicities as the rank tends to infinity. In both cases, we characterize the possible limit functions and the Vershik–Kerov type sequences of spectral parameters for which such limits exist. In the type case, this gives a new and very natural approach to recent results by Assiotis and Najnudel in the context of -ensembles in random matrix theory. These results generalize known facts about the approximation of the positive-definite Olshanski spherical functions of the space of infinite-dimensional Hermitian matrices over (with the action of the associated infinite unitary group) by spherical functions of finite-dimensional spaces of Hermitian matrices. In the type B case, our results include asymptotic results for the spherical functions associated with the Cartan motion groups of non-compact Grassmannians as the rank goes to infinity, and a classification of the Olshanski spherical functions of the associated inductive limits.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.05.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.05.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了当阶数趋于无穷大时,与正乘数类型和类型根系统相关的贝塞尔函数的渐近行为。在这两种情况下,我们都描述了可能的极限函数以及存在这些极限的光谱参数的 Vershik-Kerov 类型序列。在类型情况下,这为阿西奥蒂斯(Assiotis)和纳吉努德尔(Najnudel)在随机矩阵理论中的-集合背景下的最新结果提供了一种新的和非常自然的方法。这些结果概括了关于用有限维赫米提矩阵空间的球形函数逼近无限维赫米提矩阵空间的正有限奥尔森斯基球形函数(具有相关无限单元群的作用)的已知事实。在 B 型情况下,我们的结果包括与非紧密格拉斯曼的 Cartan 运动群相关的球函数在秩达到无穷大时的渐近结果,以及相关归纳极限的 Olshanski 球函数的分类。
Limits of Bessel functions for root systems as the rank tends to infinity
We study the asymptotic behaviour of Bessel functions associated to root systems of type and type with positive multiplicities as the rank tends to infinity. In both cases, we characterize the possible limit functions and the Vershik–Kerov type sequences of spectral parameters for which such limits exist. In the type case, this gives a new and very natural approach to recent results by Assiotis and Najnudel in the context of -ensembles in random matrix theory. These results generalize known facts about the approximation of the positive-definite Olshanski spherical functions of the space of infinite-dimensional Hermitian matrices over (with the action of the associated infinite unitary group) by spherical functions of finite-dimensional spaces of Hermitian matrices. In the type B case, our results include asymptotic results for the spherical functions associated with the Cartan motion groups of non-compact Grassmannians as the rank goes to infinity, and a classification of the Olshanski spherical functions of the associated inductive limits.