DD-DCSR:通过双字典深度卷积稀疏表示为低剂量 CT 进行图像去噪

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shu Li;Yi Liu;Rongbiao Yan;Haowen Zhang;Shubin Wang;Ting Ding;Zhiguo Gui
{"title":"DD-DCSR:通过双字典深度卷积稀疏表示为低剂量 CT 进行图像去噪","authors":"Shu Li;Yi Liu;Rongbiao Yan;Haowen Zhang;Shubin Wang;Ting Ding;Zhiguo Gui","doi":"10.1109/TCI.2024.3408091","DOIUrl":null,"url":null,"abstract":"Most of the existing low-dose computed tomography (LDCT) denoising algorithms, based on convolutional neural networks, are not interpretable enough due to a lack of mathematical basis. In the process of image denoising, the sparse representation based on a single dictionary cannot restore the texture details of the image perfectly. To solve these problems, we propose a Dual-Dictionary Convolutional Sparse Representation (DD-CSR) method and construct a Dual-Dictionary Deep Convolutional Sparse Representation network (DD-DCSR) to unfold the model iteratively. The modules in the network correspond to the model one by one. In the proposed DD-CSR, the high-frequency information is extracted by Local Total Variation (LTV), and then two different learnable convolutional dictionaries are used to sparsely represent the LDCT image and its high-frequency map. To improve the robustness of the model, the adaptive coefficient is introduced into the convolutional dictionary of LDCT images, which allows the image to be represented by fewer convolutional dictionary atoms and reduces the number of parameters of the model. Considering that the sparse degree of convolutional sparse feature maps is closely related to noise, the model introduces learnable weight coefficients into the penalty items of processing LDCT high-frequency maps. The experimental results show that the interpretable DD-DCSR network can well restore the texture details of the image when removing noise/artifacts.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"899-914"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DD-DCSR: Image Denoising for Low-Dose CT via Dual-Dictionary Deep Convolutional Sparse Representation\",\"authors\":\"Shu Li;Yi Liu;Rongbiao Yan;Haowen Zhang;Shubin Wang;Ting Ding;Zhiguo Gui\",\"doi\":\"10.1109/TCI.2024.3408091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the existing low-dose computed tomography (LDCT) denoising algorithms, based on convolutional neural networks, are not interpretable enough due to a lack of mathematical basis. In the process of image denoising, the sparse representation based on a single dictionary cannot restore the texture details of the image perfectly. To solve these problems, we propose a Dual-Dictionary Convolutional Sparse Representation (DD-CSR) method and construct a Dual-Dictionary Deep Convolutional Sparse Representation network (DD-DCSR) to unfold the model iteratively. The modules in the network correspond to the model one by one. In the proposed DD-CSR, the high-frequency information is extracted by Local Total Variation (LTV), and then two different learnable convolutional dictionaries are used to sparsely represent the LDCT image and its high-frequency map. To improve the robustness of the model, the adaptive coefficient is introduced into the convolutional dictionary of LDCT images, which allows the image to be represented by fewer convolutional dictionary atoms and reduces the number of parameters of the model. Considering that the sparse degree of convolutional sparse feature maps is closely related to noise, the model introduces learnable weight coefficients into the penalty items of processing LDCT high-frequency maps. The experimental results show that the interpretable DD-DCSR network can well restore the texture details of the image when removing noise/artifacts.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"899-914\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543110/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543110/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的低剂量计算机断层扫描(LDCT)去噪算法大多基于卷积神经网络,但由于缺乏数学基础,其可解释性不足。在图像去噪过程中,基于单一字典的稀疏表示无法完美还原图像的纹理细节。为了解决这些问题,我们提出了双字典卷积稀疏表示(DD-CSR)方法,并构建了双字典深度卷积稀疏表示网络(DD-DCSR)来迭代展开模型。网络中的模块与模型一一对应。在所提出的 DD-CSR 中,通过局部总变异(LTV)提取高频信息,然后使用两个不同的可学习卷积字典来稀疏表示 LDCT 图像及其高频图。为了提高模型的鲁棒性,在 LDCT 图像的卷积字典中引入了自适应系数,这样可以用较少的卷积字典原子来表示图像,减少模型的参数数量。考虑到卷积稀疏特征图的稀疏程度与噪声密切相关,该模型在处理 LDCT 高频图的惩罚项中引入了可学习的权重系数。实验结果表明,可解释的 DD-DCSR 网络在去除噪声/伪影时,能很好地还原图像的纹理细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DD-DCSR: Image Denoising for Low-Dose CT via Dual-Dictionary Deep Convolutional Sparse Representation
Most of the existing low-dose computed tomography (LDCT) denoising algorithms, based on convolutional neural networks, are not interpretable enough due to a lack of mathematical basis. In the process of image denoising, the sparse representation based on a single dictionary cannot restore the texture details of the image perfectly. To solve these problems, we propose a Dual-Dictionary Convolutional Sparse Representation (DD-CSR) method and construct a Dual-Dictionary Deep Convolutional Sparse Representation network (DD-DCSR) to unfold the model iteratively. The modules in the network correspond to the model one by one. In the proposed DD-CSR, the high-frequency information is extracted by Local Total Variation (LTV), and then two different learnable convolutional dictionaries are used to sparsely represent the LDCT image and its high-frequency map. To improve the robustness of the model, the adaptive coefficient is introduced into the convolutional dictionary of LDCT images, which allows the image to be represented by fewer convolutional dictionary atoms and reduces the number of parameters of the model. Considering that the sparse degree of convolutional sparse feature maps is closely related to noise, the model introduces learnable weight coefficients into the penalty items of processing LDCT high-frequency maps. The experimental results show that the interpretable DD-DCSR network can well restore the texture details of the image when removing noise/artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信