带移动平台的空间多连杆刚柔机械手的非线性建模和动力学研究

IF 2.1 Q3 ROBOTICS
Pravesh Kumar, Barun Pratiher
{"title":"带移动平台的空间多连杆刚柔机械手的非线性建模和动力学研究","authors":"Pravesh Kumar, Barun Pratiher","doi":"10.1007/s41315-024-00344-z","DOIUrl":null,"url":null,"abstract":"<p>The demand for developing lighter manipulators, particularly in various long-reach applications, has surged significantly. In many of these applications, inherent structural flexibilities are unavoidable and lead to vibrations. Consequently, these residual vibrations detrimentally affect working efficiency and positioning accuracy. The present work introduces a novel approach by formulating a nonlinear dynamical model of a spatial multi-link manipulator mounted on a mobile platform. This model incorporates both rigid and flexible links, as well as the payload, enabling a comprehensive study of end-point residual vibration characteristics. The dynamic modeling employed in this study accounts for the interplay of coupled geometric and inertial nonlinearities arising from motion interactions among joints, actuators, and elastic link deflections. The manipulator configuration comprises rigid components and two 3D-flexible links actuated by prismatic and revolute joints, respectively. The flexible links are modelled using Euler–Bernoulli beam elements, while time-dependent in-plane motion is imparted to the rigid link. Utilizing Hamilton’s variational principle, a set of nonlinear governing equations of motion is analytically derived. Subsequently, an independent generalized coordinates system is adopted to transform the equations of motion into a nonlinear reduced form. This is achieved through discretization of the spatio-temporal equations, facilitating the analysis of trajectory dynamics for the robotic manipulator. The residual vibration characteristics at the payload end were explored graphically by applying generalized sinusoidal and bang-bang torque profiles to their respective joints. Nonlinear structural flexibility and material properties emerge as pivotal factors influencing these residual end-point vibrations. It has been observed that the bang-bang torque profile extends the settling period in residual vibration due to its intricate transition characteristics, in contrast to the sinusoidal motion profile with a specific torque duty cycle. Numerical simulations highlight that variations in physical and geometric variables significantly impact end-point residual vibrations and joint deflections, potentially leading to positioning errors in the control of spatial flexible manipulators.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear modelling and dynamics of spatial multi-link rigid-flexible manipulator with moving platform\",\"authors\":\"Pravesh Kumar, Barun Pratiher\",\"doi\":\"10.1007/s41315-024-00344-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for developing lighter manipulators, particularly in various long-reach applications, has surged significantly. In many of these applications, inherent structural flexibilities are unavoidable and lead to vibrations. Consequently, these residual vibrations detrimentally affect working efficiency and positioning accuracy. The present work introduces a novel approach by formulating a nonlinear dynamical model of a spatial multi-link manipulator mounted on a mobile platform. This model incorporates both rigid and flexible links, as well as the payload, enabling a comprehensive study of end-point residual vibration characteristics. The dynamic modeling employed in this study accounts for the interplay of coupled geometric and inertial nonlinearities arising from motion interactions among joints, actuators, and elastic link deflections. The manipulator configuration comprises rigid components and two 3D-flexible links actuated by prismatic and revolute joints, respectively. The flexible links are modelled using Euler–Bernoulli beam elements, while time-dependent in-plane motion is imparted to the rigid link. Utilizing Hamilton’s variational principle, a set of nonlinear governing equations of motion is analytically derived. Subsequently, an independent generalized coordinates system is adopted to transform the equations of motion into a nonlinear reduced form. This is achieved through discretization of the spatio-temporal equations, facilitating the analysis of trajectory dynamics for the robotic manipulator. The residual vibration characteristics at the payload end were explored graphically by applying generalized sinusoidal and bang-bang torque profiles to their respective joints. Nonlinear structural flexibility and material properties emerge as pivotal factors influencing these residual end-point vibrations. It has been observed that the bang-bang torque profile extends the settling period in residual vibration due to its intricate transition characteristics, in contrast to the sinusoidal motion profile with a specific torque duty cycle. Numerical simulations highlight that variations in physical and geometric variables significantly impact end-point residual vibrations and joint deflections, potentially leading to positioning errors in the control of spatial flexible manipulators.</p>\",\"PeriodicalId\":44563,\"journal\":{\"name\":\"International Journal of Intelligent Robotics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Robotics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41315-024-00344-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00344-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

开发轻型机械手的需求大幅增加,尤其是在各种长距离应用领域。在许多此类应用中,固有的结构挠性不可避免地会导致振动。因此,这些残余振动会对工作效率和定位精度造成不利影响。本研究引入了一种新方法,为安装在移动平台上的空间多连杆机械手建立了一个非线性动力学模型。该模型包含刚性和柔性链路以及有效载荷,可对端点残余振动特性进行全面研究。本研究采用的动态建模考虑了关节、致动器和弹性链路挠度之间的运动相互作用所产生的几何和惯性耦合非线性的相互作用。机械手配置包括刚性部件和两个三维柔性链节,分别由棱柱关节和旋转关节驱动。柔性链接采用欧拉-伯努利梁元素建模,而刚性链接则采用随时间变化的平面内运动。利用汉密尔顿变分原理,分析推导出一组非线性运动控制方程。随后,采用独立的广义坐标系统将运动方程转换为非线性简化形式。这是通过对时空方程进行离散化来实现的,从而为机器人机械手的轨迹动力学分析提供了便利。通过对各自的关节应用广义正弦和砰砰扭矩曲线,以图形方式探讨了有效载荷端的残余振动特性。非线性结构灵活性和材料特性成为影响这些残余端点振动的关键因素。据观察,与具有特定扭矩占空比的正弦运动曲线相比,"砰砰 "扭矩曲线由于其复杂的过渡特性而延长了残余振动的稳定期。数值模拟突出表明,物理和几何变量的变化会显著影响端点残余振动和关节偏移,从而可能导致空间柔性机械手控制中的定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlinear modelling and dynamics of spatial multi-link rigid-flexible manipulator with moving platform

Nonlinear modelling and dynamics of spatial multi-link rigid-flexible manipulator with moving platform

The demand for developing lighter manipulators, particularly in various long-reach applications, has surged significantly. In many of these applications, inherent structural flexibilities are unavoidable and lead to vibrations. Consequently, these residual vibrations detrimentally affect working efficiency and positioning accuracy. The present work introduces a novel approach by formulating a nonlinear dynamical model of a spatial multi-link manipulator mounted on a mobile platform. This model incorporates both rigid and flexible links, as well as the payload, enabling a comprehensive study of end-point residual vibration characteristics. The dynamic modeling employed in this study accounts for the interplay of coupled geometric and inertial nonlinearities arising from motion interactions among joints, actuators, and elastic link deflections. The manipulator configuration comprises rigid components and two 3D-flexible links actuated by prismatic and revolute joints, respectively. The flexible links are modelled using Euler–Bernoulli beam elements, while time-dependent in-plane motion is imparted to the rigid link. Utilizing Hamilton’s variational principle, a set of nonlinear governing equations of motion is analytically derived. Subsequently, an independent generalized coordinates system is adopted to transform the equations of motion into a nonlinear reduced form. This is achieved through discretization of the spatio-temporal equations, facilitating the analysis of trajectory dynamics for the robotic manipulator. The residual vibration characteristics at the payload end were explored graphically by applying generalized sinusoidal and bang-bang torque profiles to their respective joints. Nonlinear structural flexibility and material properties emerge as pivotal factors influencing these residual end-point vibrations. It has been observed that the bang-bang torque profile extends the settling period in residual vibration due to its intricate transition characteristics, in contrast to the sinusoidal motion profile with a specific torque duty cycle. Numerical simulations highlight that variations in physical and geometric variables significantly impact end-point residual vibrations and joint deflections, potentially leading to positioning errors in the control of spatial flexible manipulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信