{"title":"基于机器阅读理解和混合指针序列标记的文档级关联提取","authors":"xiaoyi wang, Jie Liu, Jiong Wang, Jianyong Duan, guixia guan, qing zhang, Jianshe Zhou","doi":"10.1145/3666042","DOIUrl":null,"url":null,"abstract":"<p>Document-level relational extraction requires reading, memorization and reasoning to discover relevant factual information in multiple sentences. It is difficult for the current hierarchical network and graph network methods to fully capture the structural information behind the document and make natural reasoning from the context. Different from the previous methods, this paper reconstructs the relation extraction task into a machine reading comprehension task. Each pair of entities and relationships is characterized by a question template, and the extraction of entities and relationships is translated into identifying answers from the context. To enhance the context comprehension ability of the extraction model and achieve more precise extraction, we introduce large language models (LLMs) during question construction, enabling the generation of exemplary answers. Besides, to solve the multi-label and multi-entity problems in documents, we propose a new answer extraction model based on hybrid pointer-sequence labeling, which improves the reasoning ability of the model and realizes the extraction of zero or multiple answers in documents. Extensive experiments on three public datasets show that the proposed method is effective.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document-Level Relation Extraction Based on Machine Reading Comprehension and Hybrid Pointer-sequence Labeling\",\"authors\":\"xiaoyi wang, Jie Liu, Jiong Wang, Jianyong Duan, guixia guan, qing zhang, Jianshe Zhou\",\"doi\":\"10.1145/3666042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Document-level relational extraction requires reading, memorization and reasoning to discover relevant factual information in multiple sentences. It is difficult for the current hierarchical network and graph network methods to fully capture the structural information behind the document and make natural reasoning from the context. Different from the previous methods, this paper reconstructs the relation extraction task into a machine reading comprehension task. Each pair of entities and relationships is characterized by a question template, and the extraction of entities and relationships is translated into identifying answers from the context. To enhance the context comprehension ability of the extraction model and achieve more precise extraction, we introduce large language models (LLMs) during question construction, enabling the generation of exemplary answers. Besides, to solve the multi-label and multi-entity problems in documents, we propose a new answer extraction model based on hybrid pointer-sequence labeling, which improves the reasoning ability of the model and realizes the extraction of zero or multiple answers in documents. Extensive experiments on three public datasets show that the proposed method is effective.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3666042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3666042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Document-Level Relation Extraction Based on Machine Reading Comprehension and Hybrid Pointer-sequence Labeling
Document-level relational extraction requires reading, memorization and reasoning to discover relevant factual information in multiple sentences. It is difficult for the current hierarchical network and graph network methods to fully capture the structural information behind the document and make natural reasoning from the context. Different from the previous methods, this paper reconstructs the relation extraction task into a machine reading comprehension task. Each pair of entities and relationships is characterized by a question template, and the extraction of entities and relationships is translated into identifying answers from the context. To enhance the context comprehension ability of the extraction model and achieve more precise extraction, we introduce large language models (LLMs) during question construction, enabling the generation of exemplary answers. Besides, to solve the multi-label and multi-entity problems in documents, we propose a new answer extraction model based on hybrid pointer-sequence labeling, which improves the reasoning ability of the model and realizes the extraction of zero or multiple answers in documents. Extensive experiments on three public datasets show that the proposed method is effective.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.