{"title":"通过负整数阶多项式统一三角函数和双曲函数导数","authors":"Andrew Ducharme","doi":"arxiv-2405.19371","DOIUrl":null,"url":null,"abstract":"Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions\nhave sporadically been connected with the nth derivatives of trigonometric\nfunctions. We show the polylogarithm $\\text{Li}_s(z)$, a function of complex\nargument and order $z$ and $s$, encodes the nth derivatives of the cotangent,\ntangent, cosecant and secant functions, and their hyperbolic equivalents, at\nnegative integer orders $s = -n$. We then show how at the same orders, the\npolylogarithm represents the nth application of the operator $x \\frac{d}{dx}$\non the inverse trigonometric and hyperbolic functions. Finally, we construct a\nsum relating two polylogarithms of order $-n$ to a linear combination of\npolylogarithms of orders $s = 0, -1, -2, ..., -n$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms\",\"authors\":\"Andrew Ducharme\",\"doi\":\"arxiv-2405.19371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions\\nhave sporadically been connected with the nth derivatives of trigonometric\\nfunctions. We show the polylogarithm $\\\\text{Li}_s(z)$, a function of complex\\nargument and order $z$ and $s$, encodes the nth derivatives of the cotangent,\\ntangent, cosecant and secant functions, and their hyperbolic equivalents, at\\nnegative integer orders $s = -n$. We then show how at the same orders, the\\npolylogarithm represents the nth application of the operator $x \\\\frac{d}{dx}$\\non the inverse trigonometric and hyperbolic functions. Finally, we construct a\\nsum relating two polylogarithms of order $-n$ to a linear combination of\\npolylogarithms of orders $s = 0, -1, -2, ..., -n$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms
Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions
have sporadically been connected with the nth derivatives of trigonometric
functions. We show the polylogarithm $\text{Li}_s(z)$, a function of complex
argument and order $z$ and $s$, encodes the nth derivatives of the cotangent,
tangent, cosecant and secant functions, and their hyperbolic equivalents, at
negative integer orders $s = -n$. We then show how at the same orders, the
polylogarithm represents the nth application of the operator $x \frac{d}{dx}$
on the inverse trigonometric and hyperbolic functions. Finally, we construct a
sum relating two polylogarithms of order $-n$ to a linear combination of
polylogarithms of orders $s = 0, -1, -2, ..., -n$.