通过负整数阶多项式统一三角函数和双曲函数导数

Andrew Ducharme
{"title":"通过负整数阶多项式统一三角函数和双曲函数导数","authors":"Andrew Ducharme","doi":"arxiv-2405.19371","DOIUrl":null,"url":null,"abstract":"Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions\nhave sporadically been connected with the nth derivatives of trigonometric\nfunctions. We show the polylogarithm $\\text{Li}_s(z)$, a function of complex\nargument and order $z$ and $s$, encodes the nth derivatives of the cotangent,\ntangent, cosecant and secant functions, and their hyperbolic equivalents, at\nnegative integer orders $s = -n$. We then show how at the same orders, the\npolylogarithm represents the nth application of the operator $x \\frac{d}{dx}$\non the inverse trigonometric and hyperbolic functions. Finally, we construct a\nsum relating two polylogarithms of order $-n$ to a linear combination of\npolylogarithms of orders $s = 0, -1, -2, ..., -n$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms\",\"authors\":\"Andrew Ducharme\",\"doi\":\"arxiv-2405.19371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions\\nhave sporadically been connected with the nth derivatives of trigonometric\\nfunctions. We show the polylogarithm $\\\\text{Li}_s(z)$, a function of complex\\nargument and order $z$ and $s$, encodes the nth derivatives of the cotangent,\\ntangent, cosecant and secant functions, and their hyperbolic equivalents, at\\nnegative integer orders $s = -n$. We then show how at the same orders, the\\npolylogarithm represents the nth application of the operator $x \\\\frac{d}{dx}$\\non the inverse trigonometric and hyperbolic functions. Finally, we construct a\\nsum relating two polylogarithms of order $-n$ to a linear combination of\\npolylogarithms of orders $s = 0, -1, -2, ..., -n$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

像多伽马函数、赫维茨zeta函数和勒奇zeta函数这样的特殊函数,已经零星地与三角函数的n次导数联系在一起。我们展示了多项式 $text{Li}_s(z)$,一个复参数、阶数 $z$ 和 $s$ 的函数,在负整数阶数 $s = -n$ 时,编码了余切、正切、余割和正割函数的 n 次导数,以及它们的双曲等价物。然后,我们展示了在相同阶数下,对数如何表示算子 $x \frac{d}{dx}$ 在反三角函数和双曲函数上的第 n 次应用。最后,我们构建了将两个阶数为 $-n$ 的多项式与阶数为 $s = 0, -1, -2, ..., -n$ 的多项式的线性组合联系起来的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms
Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions have sporadically been connected with the nth derivatives of trigonometric functions. We show the polylogarithm $\text{Li}_s(z)$, a function of complex argument and order $z$ and $s$, encodes the nth derivatives of the cotangent, tangent, cosecant and secant functions, and their hyperbolic equivalents, at negative integer orders $s = -n$. We then show how at the same orders, the polylogarithm represents the nth application of the operator $x \frac{d}{dx}$ on the inverse trigonometric and hyperbolic functions. Finally, we construct a sum relating two polylogarithms of order $-n$ to a linear combination of polylogarithms of orders $s = 0, -1, -2, ..., -n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信