Mehdi Fadaei, Mohammad Javad Ameri, Yousef Rafiei, Morteza Asghari, Mehran Ghasemi
{"title":"基于 PID 控制器和集成生产模型的卧式分离器智能控制系统的试验设计与制造","authors":"Mehdi Fadaei, Mohammad Javad Ameri, Yousef Rafiei, Morteza Asghari, Mehran Ghasemi","doi":"10.1007/s13202-024-01824-5","DOIUrl":null,"url":null,"abstract":"<p>During oil production, the reservoir pressure declines, causing changes in the hydrocarbon components. To ensure better separation of produced phases, separator dimensions should also be adjusted. It is not possible to change the dimensions of the separator during production. Therefore, to improve the separation of the phases, the level of the separator needs to be adjusted. An intelligent system is required to ensure that the liquid level is maintained at the desired level for optimal phase separation during changes in reservoir pressure. In this study, a novel correlation is presented to measure the desired liquid level using new separator pressures. For this purpose, an intelligent system was built in the laboratory and tested in different operational conditions. The intelligent system effectively maintained the desired liquid level of the separator through a new correlation technique. The system accomplished this by acquiring new separator pressure readings collected by installed sensors. This approach helped mitigate the negative effects of the slug flow regime and minimized issues such as foam formation and over-flushing of the separator. It could achieve a 99.1% separation efficiency between gas and liquid phases. This was possible during liquid and gas flow rates ranging from 0 to 2.35 and 8–17 m<sup>3</sup>/h, respectively. The system could operate under bubble, stratified, plug, and slug flow regimes. Then the intelligent model obtained from lab experiments was integrated into the production model for the southern Iranian oil field. The smart model increased oil production by 13% and prevented the separator from over-flushing in 840 days.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"45 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental design and manufacturing of a smart control system for horizontal separator based on PID controller and integrated production model\",\"authors\":\"Mehdi Fadaei, Mohammad Javad Ameri, Yousef Rafiei, Morteza Asghari, Mehran Ghasemi\",\"doi\":\"10.1007/s13202-024-01824-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During oil production, the reservoir pressure declines, causing changes in the hydrocarbon components. To ensure better separation of produced phases, separator dimensions should also be adjusted. It is not possible to change the dimensions of the separator during production. Therefore, to improve the separation of the phases, the level of the separator needs to be adjusted. An intelligent system is required to ensure that the liquid level is maintained at the desired level for optimal phase separation during changes in reservoir pressure. In this study, a novel correlation is presented to measure the desired liquid level using new separator pressures. For this purpose, an intelligent system was built in the laboratory and tested in different operational conditions. The intelligent system effectively maintained the desired liquid level of the separator through a new correlation technique. The system accomplished this by acquiring new separator pressure readings collected by installed sensors. This approach helped mitigate the negative effects of the slug flow regime and minimized issues such as foam formation and over-flushing of the separator. It could achieve a 99.1% separation efficiency between gas and liquid phases. This was possible during liquid and gas flow rates ranging from 0 to 2.35 and 8–17 m<sup>3</sup>/h, respectively. The system could operate under bubble, stratified, plug, and slug flow regimes. Then the intelligent model obtained from lab experiments was integrated into the production model for the southern Iranian oil field. The smart model increased oil production by 13% and prevented the separator from over-flushing in 840 days.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01824-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01824-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental design and manufacturing of a smart control system for horizontal separator based on PID controller and integrated production model
During oil production, the reservoir pressure declines, causing changes in the hydrocarbon components. To ensure better separation of produced phases, separator dimensions should also be adjusted. It is not possible to change the dimensions of the separator during production. Therefore, to improve the separation of the phases, the level of the separator needs to be adjusted. An intelligent system is required to ensure that the liquid level is maintained at the desired level for optimal phase separation during changes in reservoir pressure. In this study, a novel correlation is presented to measure the desired liquid level using new separator pressures. For this purpose, an intelligent system was built in the laboratory and tested in different operational conditions. The intelligent system effectively maintained the desired liquid level of the separator through a new correlation technique. The system accomplished this by acquiring new separator pressure readings collected by installed sensors. This approach helped mitigate the negative effects of the slug flow regime and minimized issues such as foam formation and over-flushing of the separator. It could achieve a 99.1% separation efficiency between gas and liquid phases. This was possible during liquid and gas flow rates ranging from 0 to 2.35 and 8–17 m3/h, respectively. The system could operate under bubble, stratified, plug, and slug flow regimes. Then the intelligent model obtained from lab experiments was integrated into the production model for the southern Iranian oil field. The smart model increased oil production by 13% and prevented the separator from over-flushing in 840 days.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies