在计算冰川表面显热通量时改进涡度协方差测量的处理方法

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Cole Lord-May, Valentina Radić
{"title":"在计算冰川表面显热通量时改进涡度协方差测量的处理方法","authors":"Cole Lord-May, Valentina Radić","doi":"10.1017/jog.2024.39","DOIUrl":null,"url":null,"abstract":"<p>Bulk aerodynamic methods have been shown to perform poorly in computing turbulent heat fluxes at glacier surfaces during shallow katabatic winds. Katabatic surface layers have different wind shear and flux profiles to the surface layers for which the bulk methods were developed, potentially invalidating their use in these conditions. In addition, eddy covariance-derived turbulent heat fluxes are unlikely to be representative of surface conditions when eddy covariance data are collected close to the wind speed maximum (WSM). Here we utilize two months of eddy covariance and meteorological data measured at three different heights (1 m, 2 m, and 3 m) at Kaskawulsh Glacier in the Yukon, Canada, to re-examine the performance of bulk methods relative to eddy covariance-derived fluxes under different near-surface flow regimes. We propose a new set of processing methods for one-level eddy covariance data to ensure the validity of calculated fluxes during highly variable flows and low-level wind speed maxima, which leads to improved agreement between eddy covariance-derived and modelled fluxes across all flow regimes, with the best agreement (correlation &gt;0.9) 1 m above the surface. Contrary to previous studies, these results show that adequately processed eddy covariance data collected at or above the WSM can provide valid estimates of surface heat fluxes.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"13 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved processing methods for eddy covariance measurements in calculating sensible heat fluxes at glacier surfaces\",\"authors\":\"Cole Lord-May, Valentina Radić\",\"doi\":\"10.1017/jog.2024.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bulk aerodynamic methods have been shown to perform poorly in computing turbulent heat fluxes at glacier surfaces during shallow katabatic winds. Katabatic surface layers have different wind shear and flux profiles to the surface layers for which the bulk methods were developed, potentially invalidating their use in these conditions. In addition, eddy covariance-derived turbulent heat fluxes are unlikely to be representative of surface conditions when eddy covariance data are collected close to the wind speed maximum (WSM). Here we utilize two months of eddy covariance and meteorological data measured at three different heights (1 m, 2 m, and 3 m) at Kaskawulsh Glacier in the Yukon, Canada, to re-examine the performance of bulk methods relative to eddy covariance-derived fluxes under different near-surface flow regimes. We propose a new set of processing methods for one-level eddy covariance data to ensure the validity of calculated fluxes during highly variable flows and low-level wind speed maxima, which leads to improved agreement between eddy covariance-derived and modelled fluxes across all flow regimes, with the best agreement (correlation &gt;0.9) 1 m above the surface. Contrary to previous studies, these results show that adequately processed eddy covariance data collected at or above the WSM can provide valid estimates of surface heat fluxes.</p>\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2024.39\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2024.39","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

大量空气动力学方法在计算浅层卡塔巴赫风时冰川表面的湍流热通量时表现不佳。卡巴平流表层的风切变和通量剖面不同于体动力学方法所针对的表层,因此在这些条件下使用体动力学方法可能无效。此外,在靠近最大风速(WSM)的地方收集涡度协方差数据时,涡度协方差得出的湍流热通量不太可能代表地表条件。在这里,我们利用在加拿大育空地区卡斯卡沃什冰川的三个不同高度(1 米、2 米和 3 米)测量的两个月涡度协方差和气象数据,重新检验了在不同的近地表流态下,大量方法相对于涡度协方差衍生通量的性能。我们为单级涡度协方差数据提出了一套新的处理方法,以确保在高度变化的流动和低层风速最大值时计算通量的有效性,从而提高了涡度协方差推导通量与模拟通量在所有流动状态下的一致性,其中距地表 1 米处的一致性最好(相关性为 0.9)。与之前的研究相反,这些结果表明,在 WSM 或 WSM 以上采集的涡度协方差数据经过充分处理后,可以提供有效的地表热通量估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved processing methods for eddy covariance measurements in calculating sensible heat fluxes at glacier surfaces

Bulk aerodynamic methods have been shown to perform poorly in computing turbulent heat fluxes at glacier surfaces during shallow katabatic winds. Katabatic surface layers have different wind shear and flux profiles to the surface layers for which the bulk methods were developed, potentially invalidating their use in these conditions. In addition, eddy covariance-derived turbulent heat fluxes are unlikely to be representative of surface conditions when eddy covariance data are collected close to the wind speed maximum (WSM). Here we utilize two months of eddy covariance and meteorological data measured at three different heights (1 m, 2 m, and 3 m) at Kaskawulsh Glacier in the Yukon, Canada, to re-examine the performance of bulk methods relative to eddy covariance-derived fluxes under different near-surface flow regimes. We propose a new set of processing methods for one-level eddy covariance data to ensure the validity of calculated fluxes during highly variable flows and low-level wind speed maxima, which leads to improved agreement between eddy covariance-derived and modelled fluxes across all flow regimes, with the best agreement (correlation >0.9) 1 m above the surface. Contrary to previous studies, these results show that adequately processed eddy covariance data collected at or above the WSM can provide valid estimates of surface heat fluxes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信