Junhao Feng, Ji-Hoon Choi, Xue Zhang, Jaehoon Park, Jin-Hyuk Bae
{"title":"碘掺杂对溶液加工氧化铟薄膜晶体管结构和电气特性的影响及其在碘传感中的潜在应用","authors":"Junhao Feng, Ji-Hoon Choi, Xue Zhang, Jaehoon Park, Jin-Hyuk Bae","doi":"10.1007/s40042-024-01099-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the influence of solution-processed indium oxide (In<sub>2</sub>O<sub>3</sub>) thin-film transistors (TFTs) with various iodine vapor (I<sub>2</sub>) doping times. Prolonged iodine doping time is found to induce some important changes in the devices: (i) increase in In<sub>2</sub>O<sub>3</sub> film thickness and nanoparticle size; (ii) decrease in the metal-hydroxyl bonding and increase in the metal–oxygen bonding; (iii) the positive moved threshold voltage, lower field-effect mobility, and higher on/off current ratio from 0 s (sec) to 10 s. Furthermore, vacuum thermal treatment, as a facial, novel method to recover the electrical performances of I<sub>2</sub>-doped In<sub>2</sub>O<sub>3</sub> TFTs was examined. I<sub>2</sub>-doped In<sub>2</sub>O<sub>3</sub> TFTs for 10 s with vacuum thermal treatment at 200 ℃ exhibited excellent recovery properties of electrical. The results indicate that iodine doping can change the electrical properties of In<sub>2</sub>O<sub>3</sub> TFTs and could potentially be used for I<sub>2</sub> gas sensor.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of iodine doping on structural and electrical characteristics of solution-processed indium oxide thin-film transistors and its potential application for iodine sensing\",\"authors\":\"Junhao Feng, Ji-Hoon Choi, Xue Zhang, Jaehoon Park, Jin-Hyuk Bae\",\"doi\":\"10.1007/s40042-024-01099-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the influence of solution-processed indium oxide (In<sub>2</sub>O<sub>3</sub>) thin-film transistors (TFTs) with various iodine vapor (I<sub>2</sub>) doping times. Prolonged iodine doping time is found to induce some important changes in the devices: (i) increase in In<sub>2</sub>O<sub>3</sub> film thickness and nanoparticle size; (ii) decrease in the metal-hydroxyl bonding and increase in the metal–oxygen bonding; (iii) the positive moved threshold voltage, lower field-effect mobility, and higher on/off current ratio from 0 s (sec) to 10 s. Furthermore, vacuum thermal treatment, as a facial, novel method to recover the electrical performances of I<sub>2</sub>-doped In<sub>2</sub>O<sub>3</sub> TFTs was examined. I<sub>2</sub>-doped In<sub>2</sub>O<sub>3</sub> TFTs for 10 s with vacuum thermal treatment at 200 ℃ exhibited excellent recovery properties of electrical. The results indicate that iodine doping can change the electrical properties of In<sub>2</sub>O<sub>3</sub> TFTs and could potentially be used for I<sub>2</sub> gas sensor.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01099-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01099-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of iodine doping on structural and electrical characteristics of solution-processed indium oxide thin-film transistors and its potential application for iodine sensing
This study investigated the influence of solution-processed indium oxide (In2O3) thin-film transistors (TFTs) with various iodine vapor (I2) doping times. Prolonged iodine doping time is found to induce some important changes in the devices: (i) increase in In2O3 film thickness and nanoparticle size; (ii) decrease in the metal-hydroxyl bonding and increase in the metal–oxygen bonding; (iii) the positive moved threshold voltage, lower field-effect mobility, and higher on/off current ratio from 0 s (sec) to 10 s. Furthermore, vacuum thermal treatment, as a facial, novel method to recover the electrical performances of I2-doped In2O3 TFTs was examined. I2-doped In2O3 TFTs for 10 s with vacuum thermal treatment at 200 ℃ exhibited excellent recovery properties of electrical. The results indicate that iodine doping can change the electrical properties of In2O3 TFTs and could potentially be used for I2 gas sensor.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.