{"title":"当 1 < p < 2 时,与惠特尼对 L 2,p (R2) 的扩展问题有关的一个例子","authors":"Jacob Carruth, Arie Israel","doi":"10.1515/ans-2023-0126","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the existence of a bounded linear extension operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>T</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T:{L}^{2,p}\\left(E\\right)\\to {L}^{2,p}\\left({\\mathbb{R}}^{2}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0126_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> when 1 < <jats:italic>p</jats:italic> < 2, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$E\\subset {\\mathbb{R}}^{2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0126_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2\",\"authors\":\"Jacob Carruth, Arie Israel\",\"doi\":\"10.1515/ans-2023-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the existence of a bounded linear extension operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>T</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T:{L}^{2,p}\\\\left(E\\\\right)\\\\to {L}^{2,p}\\\\left({\\\\mathbb{R}}^{2}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0126_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula> when 1 < <jats:italic>p</jats:italic> < 2, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$E\\\\subset {\\\\mathbb{R}}^{2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0126_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula> is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文证明了有界线性扩展算子 T : L 2 , p ( E ) → L 2 , p ( R 2 ) $T 的存在性:当 1 < p < 2 时,{L}^{2,p}left(E/right)\to {L}^{2,p}left({\mathbb{R}}^{2}\right)$ ,其中 E ⊂ R 2 $Esubset {\mathbb{R}}^{2}$ 是一个具有分形结构的离散集合。我们的证明利用了 Fefferman-Klartag ("径向对称二叉树上 Sobolev 空间的线性扩展算子",《非线性研究》,第 23 卷第 1 期,第 20220075 页,2023 年)关于径向对称二叉树的线性扩展算子存在性的定理。
An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2
In this paper, we prove the existence of a bounded linear extension operator T:L2,p(E)→L2,p(R2)$T:{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2, where E⊂R2$E\subset {\mathbb{R}}^{2}$ is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” Adv. Nonlinear Stud., vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.