当 1 < p < 2 时,与惠特尼对 L 2,p (R2) 的扩展问题有关的一个例子

IF 2.1 2区 数学 Q1 MATHEMATICS
Jacob Carruth, Arie Israel
{"title":"当 1 < p < 2 时,与惠特尼对 L 2,p (R2) 的扩展问题有关的一个例子","authors":"Jacob Carruth, Arie Israel","doi":"10.1515/ans-2023-0126","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the existence of a bounded linear extension operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>T</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T:{L}^{2,p}\\left(E\\right)\\to {L}^{2,p}\\left({\\mathbb{R}}^{2}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0126_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> when 1 &lt; <jats:italic>p</jats:italic> &lt; 2, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$E\\subset {\\mathbb{R}}^{2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0126_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2\",\"authors\":\"Jacob Carruth, Arie Israel\",\"doi\":\"10.1515/ans-2023-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the existence of a bounded linear extension operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>T</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$T:{L}^{2,p}\\\\left(E\\\\right)\\\\to {L}^{2,p}\\\\left({\\\\mathbb{R}}^{2}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0126_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula> when 1 &lt; <jats:italic>p</jats:italic> &lt; 2, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$E\\\\subset {\\\\mathbb{R}}^{2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0126_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula> is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了有界线性扩展算子 T : L 2 , p ( E ) → L 2 , p ( R 2 ) $T 的存在性:当 1 < p < 2 时,{L}^{2,p}left(E/right)\to {L}^{2,p}left({\mathbb{R}}^{2}\right)$ ,其中 E ⊂ R 2 $Esubset {\mathbb{R}}^{2}$ 是一个具有分形结构的离散集合。我们的证明利用了 Fefferman-Klartag ("径向对称二叉树上 Sobolev 空间的线性扩展算子",《非线性研究》,第 23 卷第 1 期,第 20220075 页,2023 年)关于径向对称二叉树的线性扩展算子存在性的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2
In this paper, we prove the existence of a bounded linear extension operator T : L 2 , p ( E ) L 2 , p ( R 2 ) $T:{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2, where E R 2 $E\subset {\mathbb{R}}^{2}$ is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” Adv. Nonlinear Stud., vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信