动态场景下粘度计的移动液位检测方法研究

Liu Xia, Jing Rongyao, Zhang Kun, Zhao Qinjun, Sun Mingxu
{"title":"动态场景下粘度计的移动液位检测方法研究","authors":"Liu Xia, Jing Rongyao, Zhang Kun, Zhao Qinjun, Sun Mingxu","doi":"10.1007/s11036-024-02335-7","DOIUrl":null,"url":null,"abstract":"<p>In order to solve the problem of false detection of the moving liquid level caused by the vibration of the constant temperature water bath, this paper combines the Type-2 Fuzzy Gaussian Mixture Model (T2-FGMM) and Markov Random Field (MRF) to study a new background modeling method for detecting the moving liquid level in dynamic scenes. The method first considers the output of T2-FGMM as the initial labeling domain of MRF, and then combines the local energy of the labeling domain with the observation energy. The key of this method is to combine the spatiotemporal prior of T2-FGMM with the observation. Comparative experimental results show that the proposed algorithm has better dynamic background detection effect than traditional frame difference method and Vibe algorithm, and can effectively eliminate the influence of the vibration of the constant temperature water bath on the detection of the moving liquid level of the viscometer.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Moving Liquid Level Detection Method of Viscometer in Dynamic Scene\",\"authors\":\"Liu Xia, Jing Rongyao, Zhang Kun, Zhao Qinjun, Sun Mingxu\",\"doi\":\"10.1007/s11036-024-02335-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to solve the problem of false detection of the moving liquid level caused by the vibration of the constant temperature water bath, this paper combines the Type-2 Fuzzy Gaussian Mixture Model (T2-FGMM) and Markov Random Field (MRF) to study a new background modeling method for detecting the moving liquid level in dynamic scenes. The method first considers the output of T2-FGMM as the initial labeling domain of MRF, and then combines the local energy of the labeling domain with the observation energy. The key of this method is to combine the spatiotemporal prior of T2-FGMM with the observation. Comparative experimental results show that the proposed algorithm has better dynamic background detection effect than traditional frame difference method and Vibe algorithm, and can effectively eliminate the influence of the vibration of the constant temperature water bath on the detection of the moving liquid level of the viscometer.</p>\",\"PeriodicalId\":501103,\"journal\":{\"name\":\"Mobile Networks and Applications\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11036-024-02335-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02335-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决恒温水槽振动引起的移动液位误检问题,本文结合二类模糊高斯混杂模型(T2-FGMM)和马尔可夫随机场(MRF),研究了一种新的背景建模方法,用于检测动态场景中的移动液位。该方法首先将 T2-FGMM 的输出视为 MRF 的初始标注域,然后将标注域的局部能量与观测能量相结合。该方法的关键在于将 T2-FGMM 的时空先验与观测相结合。对比实验结果表明,与传统的帧差法和 Vibe 算法相比,所提出的算法具有更好的动态背景检测效果,并能有效消除恒温水浴的振动对粘度计移动液位检测的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on Moving Liquid Level Detection Method of Viscometer in Dynamic Scene

Research on Moving Liquid Level Detection Method of Viscometer in Dynamic Scene

In order to solve the problem of false detection of the moving liquid level caused by the vibration of the constant temperature water bath, this paper combines the Type-2 Fuzzy Gaussian Mixture Model (T2-FGMM) and Markov Random Field (MRF) to study a new background modeling method for detecting the moving liquid level in dynamic scenes. The method first considers the output of T2-FGMM as the initial labeling domain of MRF, and then combines the local energy of the labeling domain with the observation energy. The key of this method is to combine the spatiotemporal prior of T2-FGMM with the observation. Comparative experimental results show that the proposed algorithm has better dynamic background detection effect than traditional frame difference method and Vibe algorithm, and can effectively eliminate the influence of the vibration of the constant temperature water bath on the detection of the moving liquid level of the viscometer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信