约束优化问题中最小值的稳定性和隐函数定理

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Aram V. Arutyunov, Kirill A. Tsarkov, Sergey E. Zhukovskiy
{"title":"约束优化问题中最小值的稳定性和隐函数定理","authors":"Aram V. Arutyunov, Kirill A. Tsarkov, Sergey E. Zhukovskiy","doi":"10.1007/s10957-024-02459-6","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we consider both finite-dimensional and infinite-dimensional optimization problems with inclusion-type and equality-type constraints. We obtain sufficient conditions for the stability in the weak topology of a solution to this problem with respect to small perturbations of the problem parameters. In the finite-dimensional case, conditions for the stability in the strong topology of the solution are obtained for the problem with equality-type constraints. These conditions are based on a certain implicit function theorem.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"18 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Minima in Constrained Optimization Problems and Implicit Function Theorem\",\"authors\":\"Aram V. Arutyunov, Kirill A. Tsarkov, Sergey E. Zhukovskiy\",\"doi\":\"10.1007/s10957-024-02459-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the paper, we consider both finite-dimensional and infinite-dimensional optimization problems with inclusion-type and equality-type constraints. We obtain sufficient conditions for the stability in the weak topology of a solution to this problem with respect to small perturbations of the problem parameters. In the finite-dimensional case, conditions for the stability in the strong topology of the solution are obtained for the problem with equality-type constraints. These conditions are based on a certain implicit function theorem.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02459-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02459-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了具有包含型和相等型约束的有限维和无限维优化问题。我们获得了该问题的解在弱拓扑结构中相对于问题参数的小扰动具有稳定性的充分条件。在有限维情况下,我们还获得了带有相等类型约束条件的问题的强拓扑解的稳定性条件。这些条件基于某个隐函数定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Minima in Constrained Optimization Problems and Implicit Function Theorem

In the paper, we consider both finite-dimensional and infinite-dimensional optimization problems with inclusion-type and equality-type constraints. We obtain sufficient conditions for the stability in the weak topology of a solution to this problem with respect to small perturbations of the problem parameters. In the finite-dimensional case, conditions for the stability in the strong topology of the solution are obtained for the problem with equality-type constraints. These conditions are based on a certain implicit function theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信