线性回归的稳健贝叶斯非参数变量选择

Pub Date : 2024-05-28 DOI:10.1002/sta4.696
Alberto Cabezas, Marco Battiston, Christopher Nemeth
{"title":"线性回归的稳健贝叶斯非参数变量选择","authors":"Alberto Cabezas, Marco Battiston, Christopher Nemeth","doi":"10.1002/sta4.696","DOIUrl":null,"url":null,"abstract":"Spike‐and‐slab and horseshoe regressions are arguably the most popular Bayesian variable selection approaches for linear regression models. However, their performance can deteriorate if outliers and heteroskedasticity are present in the data, which are common features in many real‐world statistics and machine learning applications. This work proposes a Bayesian nonparametric approach to linear regression that performs variable selection while accounting for outliers and heteroskedasticity. Our proposed model is an instance of a Dirichlet process scale mixture model with the advantage that we can derive the full conditional distributions of all parameters in closed‐form, hence producing an efficient Gibbs sampler for posterior inference. Moreover, we present how to extend the model to account for heavy‐tailed response variables. The model's performance is tested against competing algorithms on synthetic and real‐world datasets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian nonparametric variable selection for linear regression\",\"authors\":\"Alberto Cabezas, Marco Battiston, Christopher Nemeth\",\"doi\":\"10.1002/sta4.696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spike‐and‐slab and horseshoe regressions are arguably the most popular Bayesian variable selection approaches for linear regression models. However, their performance can deteriorate if outliers and heteroskedasticity are present in the data, which are common features in many real‐world statistics and machine learning applications. This work proposes a Bayesian nonparametric approach to linear regression that performs variable selection while accounting for outliers and heteroskedasticity. Our proposed model is an instance of a Dirichlet process scale mixture model with the advantage that we can derive the full conditional distributions of all parameters in closed‐form, hence producing an efficient Gibbs sampler for posterior inference. Moreover, we present how to extend the model to account for heavy‐tailed response variables. The model's performance is tested against competing algorithms on synthetic and real‐world datasets.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

穗-板回归和马蹄回归可以说是线性回归模型中最流行的贝叶斯变量选择方法。然而,如果数据中存在异常值和异方差,它们的性能就会下降,而异常值和异方差是许多实际统计和机器学习应用中的常见特征。本研究提出了一种贝叶斯非参数线性回归方法,在考虑异常值和异方差的同时进行变量选择。我们提出的模型是 Dirichlet 过程尺度混合模型的一个实例,其优势在于我们能以闭合形式推导出所有参数的完整条件分布,从而为后验推理提供高效的 Gibbs 采样器。此外,我们还介绍了如何扩展模型以考虑重尾响应变量。我们在合成数据集和实际数据集上测试了该模型与其他算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Robust Bayesian nonparametric variable selection for linear regression
Spike‐and‐slab and horseshoe regressions are arguably the most popular Bayesian variable selection approaches for linear regression models. However, their performance can deteriorate if outliers and heteroskedasticity are present in the data, which are common features in many real‐world statistics and machine learning applications. This work proposes a Bayesian nonparametric approach to linear regression that performs variable selection while accounting for outliers and heteroskedasticity. Our proposed model is an instance of a Dirichlet process scale mixture model with the advantage that we can derive the full conditional distributions of all parameters in closed‐form, hence producing an efficient Gibbs sampler for posterior inference. Moreover, we present how to extend the model to account for heavy‐tailed response variables. The model's performance is tested against competing algorithms on synthetic and real‐world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信