论二阶线性微分方程的无限 $$\varphi $$ 阶解

Pub Date : 2024-05-29 DOI:10.1007/s40315-024-00548-1
Hui Yu, Xiaomin Li
{"title":"论二阶线性微分方程的无限 $$\\varphi $$ 阶解","authors":"Hui Yu, Xiaomin Li","doi":"10.1007/s40315-024-00548-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the second order linear differential equation </p><p> where <i>A</i>, <i>B</i> and <i>F</i> with <span>\\(B\\not \\equiv 0\\)</span> are entire functions. We find some appropriate conditions on <i>A</i>, <i>B</i> and <i>F</i> in terms of the <span>\\(\\varphi \\)</span>-order which guarantee that every non-constant entire solution <i>f</i> of (†) has infinite <span>\\(\\varphi \\)</span>-order, along with an additional relation between the hyper-<span>\\(\\varphi \\)</span>-order of <i>f</i> and the <span>\\(\\varphi \\)</span>-order of the dominating coefficient in (†).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Infinite $$\\\\varphi $$ -Order Solutions of Second Order Linear Differential Equations\",\"authors\":\"Hui Yu, Xiaomin Li\",\"doi\":\"10.1007/s40315-024-00548-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the second order linear differential equation </p><p> where <i>A</i>, <i>B</i> and <i>F</i> with <span>\\\\(B\\\\not \\\\equiv 0\\\\)</span> are entire functions. We find some appropriate conditions on <i>A</i>, <i>B</i> and <i>F</i> in terms of the <span>\\\\(\\\\varphi \\\\)</span>-order which guarantee that every non-constant entire solution <i>f</i> of (†) has infinite <span>\\\\(\\\\varphi \\\\)</span>-order, along with an additional relation between the hyper-<span>\\\\(\\\\varphi \\\\)</span>-order of <i>f</i> and the <span>\\\\(\\\\varphi \\\\)</span>-order of the dominating coefficient in (†).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00548-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00548-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了二阶线性微分方程,其中 A、B 和 F 都是\(B\not \equiv 0\) 全函数。我们从 \(\varphi \)-阶的角度找到了一些关于 A、B 和 F 的适当条件,这些条件保证了 (†) 的每个非常数全解 f 具有无限的 \(\varphi \)-阶,同时还找到了 f 的超 \(\varphi \)-阶与 (†) 中支配系数的 \(\varphi \)-阶之间的附加关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Infinite $$\varphi $$ -Order Solutions of Second Order Linear Differential Equations

分享
查看原文
On the Infinite $$\varphi $$ -Order Solutions of Second Order Linear Differential Equations

In this paper, we consider the second order linear differential equation

where A, B and F with \(B\not \equiv 0\) are entire functions. We find some appropriate conditions on A, B and F in terms of the \(\varphi \)-order which guarantee that every non-constant entire solution f of (†) has infinite \(\varphi \)-order, along with an additional relation between the hyper-\(\varphi \)-order of f and the \(\varphi \)-order of the dominating coefficient in (†).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信