{"title":"通过单动量的共轭均匀化","authors":"Sean Howe, Jackson S. Morrow, Peter Wear","doi":"10.1007/s00209-024-03523-7","DOIUrl":null,"url":null,"abstract":"<p>We use the <i>p</i>-divisible group attached to a 1-motive to generalize the conjugate <i>p</i>-adic uniformization of Iovita–Morrow–Zaharescu to arbitrary <i>p</i>-adic formal semi-abelian schemes or <i>p</i>-divisible groups over the ring of integers in a <i>p</i>-adic field. This mirrors a mixed Hodge theory construction of the inverse uniformization map for complex semi-abelian varieties.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"63 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The conjugate uniformization via 1-motives\",\"authors\":\"Sean Howe, Jackson S. Morrow, Peter Wear\",\"doi\":\"10.1007/s00209-024-03523-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the <i>p</i>-divisible group attached to a 1-motive to generalize the conjugate <i>p</i>-adic uniformization of Iovita–Morrow–Zaharescu to arbitrary <i>p</i>-adic formal semi-abelian schemes or <i>p</i>-divisible groups over the ring of integers in a <i>p</i>-adic field. This mirrors a mixed Hodge theory construction of the inverse uniformization map for complex semi-abelian varieties.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03523-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03523-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们利用附属于 1 动力的 p 不可分群,将 Iovita-Morrow-Zaharescu 的共轭 p-adic 均匀化推广到任意 p-adic 形式半阿贝尔方案或 p-adic 场中整数环上的 p 不可分群。这反映了复半阿贝尔变体的逆均匀化映射的混合霍奇理论构造。
We use the p-divisible group attached to a 1-motive to generalize the conjugate p-adic uniformization of Iovita–Morrow–Zaharescu to arbitrary p-adic formal semi-abelian schemes or p-divisible groups over the ring of integers in a p-adic field. This mirrors a mixed Hodge theory construction of the inverse uniformization map for complex semi-abelian varieties.