李群上的莫尔斯理论

IF 1 3区 数学 Q1 MATHEMATICS
Cristian Ortiz, Fabricio Valencia
{"title":"李群上的莫尔斯理论","authors":"Cristian Ortiz, Fabricio Valencia","doi":"10.1007/s00209-024-03525-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott–Shulman–Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morse theory on Lie groupoids\",\"authors\":\"Cristian Ortiz, Fabricio Valencia\",\"doi\":\"10.1007/s00209-024-03525-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott–Shulman–Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03525-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03525-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了莫尔斯列群态式,并研究了它们的主要性质。我们证明了这一概念是莫里塔不变的,从而产生了可微堆上定义明确的莫尔斯函数概念。我们展示了莫尔斯定理的一个类群版本,该定理用于描述莫尔斯Lie类群态的临界子类群水平在其非enerate临界轨道周围的拓扑行为。我们还证明了某些分离可微分堆栈的莫尔斯类型不等式,并构建了莫尔斯双复数,其总同调与底层Lie群的Bott-Shulman-Stasheff同调同构。我们提供了几个例子和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morse theory on Lie groupoids

Morse theory on Lie groupoids

In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott–Shulman–Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信