{"title":"张力作用下封闭式矩形空心截面柱螺纹固定单侧螺栓连接的构件刚度方程开发","authors":"Fu-Wei Wu, Yuan-Qi Li","doi":"10.1007/s11709-024-1064-4","DOIUrl":null,"url":null,"abstract":"<p>The derivation and validation of analytical equations for predicting the tensile initial stiffness of thread-fixed one-side bolts (TOBs), connected to enclosed rectangular hollow section (RHS) columns, is presented in this paper. Two unknown stiffness components are considered: the TOBs connection and the enclosed RHS face. First, the trapezoidal thread of TOB, as an equivalent cantilevered beam subjected to uniformly distributed loads, is analyzed to determine the associated deformations. Based on the findings, the thread-shank serial-parallel stiffness model of TOB connection is proposed. For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces, the four sidewalls are treated as rotation constraints, thus reducing the problem to a two-dimensional plate analysis. According to the load superposition method, the deflection of the face plate is resolved into three components under various boundary and load conditions. Referring to the plate deflection theory of Timoshenko, the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing, RHS thickness, height to width ratio, etc. Finally, the validity of the above stiffness equations is verified by a series of finite element (FE) models of T-stub substructures. The proposed component stiffness equations are an effective supplement to the component-based method.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of component stiffness equations for thread-fixed one-side bolt connections to an enclosed rectangular hollow section column under tension\",\"authors\":\"Fu-Wei Wu, Yuan-Qi Li\",\"doi\":\"10.1007/s11709-024-1064-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The derivation and validation of analytical equations for predicting the tensile initial stiffness of thread-fixed one-side bolts (TOBs), connected to enclosed rectangular hollow section (RHS) columns, is presented in this paper. Two unknown stiffness components are considered: the TOBs connection and the enclosed RHS face. First, the trapezoidal thread of TOB, as an equivalent cantilevered beam subjected to uniformly distributed loads, is analyzed to determine the associated deformations. Based on the findings, the thread-shank serial-parallel stiffness model of TOB connection is proposed. For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces, the four sidewalls are treated as rotation constraints, thus reducing the problem to a two-dimensional plate analysis. According to the load superposition method, the deflection of the face plate is resolved into three components under various boundary and load conditions. Referring to the plate deflection theory of Timoshenko, the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing, RHS thickness, height to width ratio, etc. Finally, the validity of the above stiffness equations is verified by a series of finite element (FE) models of T-stub substructures. The proposed component stiffness equations are an effective supplement to the component-based method.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1064-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1064-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Development of component stiffness equations for thread-fixed one-side bolt connections to an enclosed rectangular hollow section column under tension
The derivation and validation of analytical equations for predicting the tensile initial stiffness of thread-fixed one-side bolts (TOBs), connected to enclosed rectangular hollow section (RHS) columns, is presented in this paper. Two unknown stiffness components are considered: the TOBs connection and the enclosed RHS face. First, the trapezoidal thread of TOB, as an equivalent cantilevered beam subjected to uniformly distributed loads, is analyzed to determine the associated deformations. Based on the findings, the thread-shank serial-parallel stiffness model of TOB connection is proposed. For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces, the four sidewalls are treated as rotation constraints, thus reducing the problem to a two-dimensional plate analysis. According to the load superposition method, the deflection of the face plate is resolved into three components under various boundary and load conditions. Referring to the plate deflection theory of Timoshenko, the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing, RHS thickness, height to width ratio, etc. Finally, the validity of the above stiffness equations is verified by a series of finite element (FE) models of T-stub substructures. The proposed component stiffness equations are an effective supplement to the component-based method.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.