{"title":"无差别渐近对和多维斯特尔米构型","authors":"SEBASTIÁN BARBIERI, SÉBASTIEN LABBÉ","doi":"10.1017/etds.2024.39","DOIUrl":null,"url":null,"abstract":"Two asymptotic configurations on a full <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline1.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline2.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline3.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the characterization of Sturmian sequences by their factor complexity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline4.png\"/> <jats:tex-math> $n+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Many open questions are raised by the current work and are listed in the introduction.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indistinguishable asymptotic pairs and multidimensional Sturmian configurations\",\"authors\":\"SEBASTIÁN BARBIERI, SÉBASTIEN LABBÉ\",\"doi\":\"10.1017/etds.2024.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two asymptotic configurations on a full <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000397_inline1.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000397_inline2.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000397_inline3.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the characterization of Sturmian sequences by their factor complexity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000397_inline4.png\\\"/> <jats:tex-math> $n+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Many open questions are raised by the current work and are listed in the introduction.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indistinguishable asymptotic pairs and multidimensional Sturmian configurations
Two asymptotic configurations on a full $\mathbb {Z}^d$ -shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$ . We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$ . Many open questions are raised by the current work and are listed in the introduction.