有熊小池代数和罗杰斯-拉马努扬类型分区

Pub Date : 2024-05-31 DOI:10.1007/s10801-024-01340-z
Shane Chern, Zhitai Li, Dennis Stanton, Ting Xue, Ae Ja Yee
{"title":"有熊小池代数和罗杰斯-拉马努扬类型分区","authors":"Shane Chern, Zhitai Li, Dennis Stanton, Ting Xue, Ae Ja Yee","doi":"10.1007/s10801-024-01340-z","DOIUrl":null,"url":null,"abstract":"<p>Ariki and Mathas (Math Z 233(3):601–623, 2000) showed that the simple modules of the Ariki–Koike algebras <span>\\(\\mathcal {H}_{\\mathbb {C},v;Q_1,\\ldots , Q_m}\\big (G(m, 1, n)\\big )\\)</span> (when the parameters are roots of unity and <span>\\(v \\ne 1\\)</span>) are labeled by the so-called Kleshchev multipartitions. This together with Ariki’s categorification theorem enabled Ariki and Mathas to obtain the generating function for the number of Kleshchev multipartitions by making use of the Weyl–Kac character formula. In this paper, we revisit their generating function relation for the <span>\\(v=-1\\)</span> case. In particular, this <span>\\(v=-1\\)</span> scenario is of special interest as the corresponding Kleshchev multipartitions are closely tied with generalized Rogers–Ramanujan type partitions when <span>\\(Q_1=\\cdots =Q_a=-1\\)</span> and <span>\\(Q_{a+1}=\\cdots =Q_m =1\\)</span>. Based on this connection, we provide an analytic proof of the result of Ariki and Mathas for the above choice of parameters. Our second objective is to investigate simple modules of the Ariki–Koike algebra in a fixed block, which are, as widely known, labeled by the Kleshchev multiparitions with a fixed partition residue statistic. This partition statistic is also studied in the works of Berkovich, Garvan, and Uncu. Employing their results, we provide two bivariate generating function identities for the <span>\\(m=2\\)</span> scenario.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ariki–Koike algebras and Rogers–Ramanujan type partitions\",\"authors\":\"Shane Chern, Zhitai Li, Dennis Stanton, Ting Xue, Ae Ja Yee\",\"doi\":\"10.1007/s10801-024-01340-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ariki and Mathas (Math Z 233(3):601–623, 2000) showed that the simple modules of the Ariki–Koike algebras <span>\\\\(\\\\mathcal {H}_{\\\\mathbb {C},v;Q_1,\\\\ldots , Q_m}\\\\big (G(m, 1, n)\\\\big )\\\\)</span> (when the parameters are roots of unity and <span>\\\\(v \\\\ne 1\\\\)</span>) are labeled by the so-called Kleshchev multipartitions. This together with Ariki’s categorification theorem enabled Ariki and Mathas to obtain the generating function for the number of Kleshchev multipartitions by making use of the Weyl–Kac character formula. In this paper, we revisit their generating function relation for the <span>\\\\(v=-1\\\\)</span> case. In particular, this <span>\\\\(v=-1\\\\)</span> scenario is of special interest as the corresponding Kleshchev multipartitions are closely tied with generalized Rogers–Ramanujan type partitions when <span>\\\\(Q_1=\\\\cdots =Q_a=-1\\\\)</span> and <span>\\\\(Q_{a+1}=\\\\cdots =Q_m =1\\\\)</span>. Based on this connection, we provide an analytic proof of the result of Ariki and Mathas for the above choice of parameters. Our second objective is to investigate simple modules of the Ariki–Koike algebra in a fixed block, which are, as widely known, labeled by the Kleshchev multiparitions with a fixed partition residue statistic. This partition statistic is also studied in the works of Berkovich, Garvan, and Uncu. Employing their results, we provide two bivariate generating function identities for the <span>\\\\(m=2\\\\)</span> scenario.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01340-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01340-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿里奇和马萨斯(Math Z 233(3):601-623, 2000)证明了阿里奇-小池代数的简单模块(当参数是统一根且 \(v \ne 1\) 时)是由所谓的克莱舍夫多分区标记的。这与阿里奇的分类定理一起,使阿里奇和马萨斯能够利用韦尔-卡克特征公式得到克列谢夫多分区数的生成函数。在本文中,我们重温了他们关于 \(v=-1\) 情况的生成函数关系。特别是,当 \(Q_1=\cdots =Q_a=-1\) 和 \(Q_{a+1}=\cdots =Q_m =1\)时,相应的 Kleshchev 多分区与广义的 Rogers-Ramanujan 类型分区紧密相连,因此这种 \(v=-1\) 情况特别有趣。基于这种联系,我们提供了阿里奇和马萨斯对上述参数选择结果的解析证明。我们的第二个目标是研究阿里木-小池代数在固定块中的简单模块,众所周知,这些模块是由具有固定分区残差统计量的克莱舍夫多分区标记的。Berkovich, Garvan 和 Uncu 的著作中也研究了这种分区统计量。利用他们的成果,我们为 \(m=2\) 情景提供了两个双变量生成函数标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Ariki–Koike algebras and Rogers–Ramanujan type partitions

分享
查看原文
The Ariki–Koike algebras and Rogers–Ramanujan type partitions

Ariki and Mathas (Math Z 233(3):601–623, 2000) showed that the simple modules of the Ariki–Koike algebras \(\mathcal {H}_{\mathbb {C},v;Q_1,\ldots , Q_m}\big (G(m, 1, n)\big )\) (when the parameters are roots of unity and \(v \ne 1\)) are labeled by the so-called Kleshchev multipartitions. This together with Ariki’s categorification theorem enabled Ariki and Mathas to obtain the generating function for the number of Kleshchev multipartitions by making use of the Weyl–Kac character formula. In this paper, we revisit their generating function relation for the \(v=-1\) case. In particular, this \(v=-1\) scenario is of special interest as the corresponding Kleshchev multipartitions are closely tied with generalized Rogers–Ramanujan type partitions when \(Q_1=\cdots =Q_a=-1\) and \(Q_{a+1}=\cdots =Q_m =1\). Based on this connection, we provide an analytic proof of the result of Ariki and Mathas for the above choice of parameters. Our second objective is to investigate simple modules of the Ariki–Koike algebra in a fixed block, which are, as widely known, labeled by the Kleshchev multiparitions with a fixed partition residue statistic. This partition statistic is also studied in the works of Berkovich, Garvan, and Uncu. Employing their results, we provide two bivariate generating function identities for the \(m=2\) scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信