部分注入单元中理想的最大子半群

Pub Date : 2024-05-31 DOI:10.1007/s00233-024-10439-5
Apatsara Sareeto, Jörg Koppitz
{"title":"部分注入单元中理想的最大子半群","authors":"Apatsara Sareeto, Jörg Koppitz","doi":"10.1007/s00233-024-10439-5","DOIUrl":null,"url":null,"abstract":"<p>We study a submonoid of the well studied monoid <span>\\(POI_n\\)</span> of all order-preserving partial injections on an <i>n</i>-element chain. The set <span>\\(IOF_n^{par}\\)</span> of all partial transformations in <span>\\(POI_n\\)</span> which are fence-preserving as well as parity-preserving forms a submonoid of <span>\\(POI_n\\)</span>. We describe Green’s relations and ideals of <span>\\(IOF_n^{par}\\)</span>. For each ideal of <span>\\(IOF_n^{par}\\)</span>, we characterize the maximal subsemigroups. We observe that there are three different types of maximal subsemigroups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximal subsemigroups of the ideals in a monoid of partial injections\",\"authors\":\"Apatsara Sareeto, Jörg Koppitz\",\"doi\":\"10.1007/s00233-024-10439-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a submonoid of the well studied monoid <span>\\\\(POI_n\\\\)</span> of all order-preserving partial injections on an <i>n</i>-element chain. The set <span>\\\\(IOF_n^{par}\\\\)</span> of all partial transformations in <span>\\\\(POI_n\\\\)</span> which are fence-preserving as well as parity-preserving forms a submonoid of <span>\\\\(POI_n\\\\)</span>. We describe Green’s relations and ideals of <span>\\\\(IOF_n^{par}\\\\)</span>. For each ideal of <span>\\\\(IOF_n^{par}\\\\)</span>, we characterize the maximal subsemigroups. We observe that there are three different types of maximal subsemigroups.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10439-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10439-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是\(POI_n\)这个研究得很好的单元的一个子单元,它是 n 元素链上所有保序局部注入的单元。在 \(POI_n\) 中所有既保留栅栏又保留奇偶性的部分变换的集合 \(IOF_n^{par}\) 构成了 \(POI_n\) 的子单元。我们描述了格林关系和 \(IOF_n^{par}\) 的理想。对于 \(IOF_n^{par}\) 的每个理想,我们描述了最大子半群的特征。我们发现有三种不同类型的最大子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The maximal subsemigroups of the ideals in a monoid of partial injections

We study a submonoid of the well studied monoid \(POI_n\) of all order-preserving partial injections on an n-element chain. The set \(IOF_n^{par}\) of all partial transformations in \(POI_n\) which are fence-preserving as well as parity-preserving forms a submonoid of \(POI_n\). We describe Green’s relations and ideals of \(IOF_n^{par}\). For each ideal of \(IOF_n^{par}\), we characterize the maximal subsemigroups. We observe that there are three different types of maximal subsemigroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信