片状光滑介质中𝑝有限元离散化的亥姆霍兹问题的波长显式稳定性和收敛性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Bernkopf, T. Chaumont-Frelet, J. Melenk
{"title":"片状光滑介质中𝑝有限元离散化的亥姆霍兹问题的波长显式稳定性和收敛性分析","authors":"M. Bernkopf, T. Chaumont-Frelet, J. Melenk","doi":"10.1090/mcom/3958","DOIUrl":null,"url":null,"abstract":"<p>We present a wavenumber-explicit convergence analysis of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h p\"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">hp</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media\",\"authors\":\"M. Bernkopf, T. Chaumont-Frelet, J. Melenk\",\"doi\":\"10.1090/mcom/3958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a wavenumber-explicit convergence analysis of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h p\\\"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">hp</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了对 h p hp 有限元方法的波数显式收敛性分析,该方法适用于一类在大波数 k k 下具有片断解析系数的异质亥姆霍兹问题。我们的分析涵盖了具有 Robin、精确 Dirichlet-to-Neumann、二阶吸收边界条件以及完全匹配层的异质 Helmholtz 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media

We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信