广义旗变体线束上的不变标量-平面凯勒度量

Qi Yao
{"title":"广义旗变体线束上的不变标量-平面凯勒度量","authors":"Qi Yao","doi":"10.4153/s0008414x24000464","DOIUrl":null,"url":null,"abstract":"<p>Let <span>G</span> be a simply connected semisimple compact Lie group, let <span>X</span> be a simply connected compact Kähler manifold homogeneous under <span>G</span>, and let <span>L</span> be a negative holomorphic line bundle over <span>X</span>. We prove that all <span>G</span>-invariant Kähler metrics on the total space of <span>L</span> arise from the Calabi ansatz. Using this, we show that there exists a unique <span>G</span>-invariant scalar-flat Kähler metric in each <span>G</span>-invariant Kähler class of <span>L</span>. The <span>G</span>-invariant scalar-flat Kähler metrics are automatically asymptotically conical.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties\",\"authors\":\"Qi Yao\",\"doi\":\"10.4153/s0008414x24000464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>G</span> be a simply connected semisimple compact Lie group, let <span>X</span> be a simply connected compact Kähler manifold homogeneous under <span>G</span>, and let <span>L</span> be a negative holomorphic line bundle over <span>X</span>. We prove that all <span>G</span>-invariant Kähler metrics on the total space of <span>L</span> arise from the Calabi ansatz. Using this, we show that there exists a unique <span>G</span>-invariant scalar-flat Kähler metric in each <span>G</span>-invariant Kähler class of <span>L</span>. The <span>G</span>-invariant scalar-flat Kähler metrics are automatically asymptotically conical.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是简单相连的半简单紧凑李群,让 X 是在 G 下同质的简单相连紧凑凯勒流形,让 L 是 X 上的负全态线束。我们证明 L 的总空间上的所有 G 不变凯勒度量都来自卡拉比解析。利用这一点,我们证明在 L 的每个 G 不变凯勒类中都存在一个唯一的 G 不变标量平坦凯勒度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties

Let G be a simply connected semisimple compact Lie group, let X be a simply connected compact Kähler manifold homogeneous under G, and let L be a negative holomorphic line bundle over X. We prove that all G-invariant Kähler metrics on the total space of L arise from the Calabi ansatz. Using this, we show that there exists a unique G-invariant scalar-flat Kähler metric in each G-invariant Kähler class of L. The G-invariant scalar-flat Kähler metrics are automatically asymptotically conical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信