三球面中嵌入曲面之属的精确估算

Kwok-Kun Kwong
{"title":"三球面中嵌入曲面之属的精确估算","authors":"Kwok-Kun Kwong","doi":"10.1007/s12220-024-01689-4","DOIUrl":null,"url":null,"abstract":"<p>By refining the volume estimate of Heintze and Karcher [11], we obtain a sharp pinching estimate for the genus of a surface in <span>\\(\\mathbb S^{3}\\)</span>, which involves an integral of the norm of its traceless second fundamental form. More specifically, we show that if <i>g</i> is the genus of a closed orientable surface <span>\\(\\Sigma \\)</span> in a 3-dimensional orientable Riemannian manifold <i>M</i> whose sectional curvature is bounded below by 1, then <span>\\(4 \\pi ^{2} g(\\Sigma ) \\le 2\\left( 2 \\pi ^{2}-|M|\\right) +\\int _{\\Sigma } f(|{\\mathop {A}\\limits ^{\\circ }}|)\\)</span>, where <span>\\( {\\mathop {A}\\limits ^{\\circ }} \\)</span> is the traceless second fundamental form and <i>f</i> is an explicit function. As a result, the space of closed orientable embedded minimal surfaces <span>\\(\\Sigma \\)</span> with uniformly bounded <span>\\(\\Vert A\\Vert _{L^3(\\Sigma )}\\)</span> is compact in the <span>\\(C^k\\)</span> topology for any <span>\\(k\\ge 2\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sharp Estimate for the Genus of Embedded Surfaces in the 3-Sphere\",\"authors\":\"Kwok-Kun Kwong\",\"doi\":\"10.1007/s12220-024-01689-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By refining the volume estimate of Heintze and Karcher [11], we obtain a sharp pinching estimate for the genus of a surface in <span>\\\\(\\\\mathbb S^{3}\\\\)</span>, which involves an integral of the norm of its traceless second fundamental form. More specifically, we show that if <i>g</i> is the genus of a closed orientable surface <span>\\\\(\\\\Sigma \\\\)</span> in a 3-dimensional orientable Riemannian manifold <i>M</i> whose sectional curvature is bounded below by 1, then <span>\\\\(4 \\\\pi ^{2} g(\\\\Sigma ) \\\\le 2\\\\left( 2 \\\\pi ^{2}-|M|\\\\right) +\\\\int _{\\\\Sigma } f(|{\\\\mathop {A}\\\\limits ^{\\\\circ }}|)\\\\)</span>, where <span>\\\\( {\\\\mathop {A}\\\\limits ^{\\\\circ }} \\\\)</span> is the traceless second fundamental form and <i>f</i> is an explicit function. As a result, the space of closed orientable embedded minimal surfaces <span>\\\\(\\\\Sigma \\\\)</span> with uniformly bounded <span>\\\\(\\\\Vert A\\\\Vert _{L^3(\\\\Sigma )}\\\\)</span> is compact in the <span>\\\\(C^k\\\\)</span> topology for any <span>\\\\(k\\\\ge 2\\\\)</span>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01689-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01689-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过完善 Heintze 和 Karcher [11]的体积估计,我们得到了对\(\mathbb S^{3}\)中曲面的属的尖锐掐算估计,这涉及其无迹第二基本形式的规范积分。更具体地说,我们证明了如果 g 是三维可定向黎曼流形 M 中一个封闭可定向曲面 \(\Sigma \) 的属,而这个曲面的截面曲率在下面以 1 为界、then \(4 \pi ^{2} g(\Sigma ) \le 2\left( 2 \pi ^{2}-|M|\right) +\int _\{Sigma } f(|{\mathop {A}\limits ^{\circ }}|)\), where \( {\mathop {A}\limits ^{\circ }} \) is the traceless second fundamental form and f is an explicit function.因此,对于任意的 \(k\ge 2\), 在 \(C^k\) 拓扑中,具有均匀约束的封闭可定向嵌入极小曲面 \(\Sigma \) 的空间是紧凑的(\Vert A\Vert _{L^3(\Sigma )}\ )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Sharp Estimate for the Genus of Embedded Surfaces in the 3-Sphere

A Sharp Estimate for the Genus of Embedded Surfaces in the 3-Sphere

By refining the volume estimate of Heintze and Karcher [11], we obtain a sharp pinching estimate for the genus of a surface in \(\mathbb S^{3}\), which involves an integral of the norm of its traceless second fundamental form. More specifically, we show that if g is the genus of a closed orientable surface \(\Sigma \) in a 3-dimensional orientable Riemannian manifold M whose sectional curvature is bounded below by 1, then \(4 \pi ^{2} g(\Sigma ) \le 2\left( 2 \pi ^{2}-|M|\right) +\int _{\Sigma } f(|{\mathop {A}\limits ^{\circ }}|)\), where \( {\mathop {A}\limits ^{\circ }} \) is the traceless second fundamental form and f is an explicit function. As a result, the space of closed orientable embedded minimal surfaces \(\Sigma \) with uniformly bounded \(\Vert A\Vert _{L^3(\Sigma )}\) is compact in the \(C^k\) topology for any \(k\ge 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信