{"title":"带阻尼的自由边界不可压缩欧拉方程的衰减和全局良好拟合","authors":"Jiali Lian","doi":"10.1007/s12220-024-01694-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping\",\"authors\":\"Jiali Lian\",\"doi\":\"10.1007/s12220-024-01694-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01694-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01694-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是在水平无限环境中,位于大气层之下和刚性底部之上的不可压缩流体层的自由边界问题。流体动力学由带阻尼和重力的不可压缩欧拉方程控制,上自由边界的表面张力效应被忽略。我们证明了该问题在二维和三维的小初始数据下的全局好求性。这里的关键思路之一是利用时间加权耗散估计来关闭非线性能量估计;特别是,这意味着速度的 Lipschitz norm 在时间上是可积分的,这与粘性表面波的情况明显不同(Guo 和 Tice 在 Anal PDE 6(6):1429-1533, 2013; Wang 在 Adv Math 374:107330, 2020)。
Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping
We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).