带阻尼的自由边界不可压缩欧拉方程的衰减和全局良好拟合

Jiali Lian
{"title":"带阻尼的自由边界不可压缩欧拉方程的衰减和全局良好拟合","authors":"Jiali Lian","doi":"10.1007/s12220-024-01694-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping\",\"authors\":\"Jiali Lian\",\"doi\":\"10.1007/s12220-024-01694-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01694-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01694-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在水平无限环境中,位于大气层之下和刚性底部之上的不可压缩流体层的自由边界问题。流体动力学由带阻尼和重力的不可压缩欧拉方程控制,上自由边界的表面张力效应被忽略。我们证明了该问题在二维和三维的小初始数据下的全局好求性。这里的关键思路之一是利用时间加权耗散估计来关闭非线性能量估计;特别是,这意味着速度的 Lipschitz norm 在时间上是可积分的,这与粘性表面波的情况明显不同(Guo 和 Tice 在 Anal PDE 6(6):1429-1533, 2013; Wang 在 Adv Math 374:107330, 2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping

We consider the free boundary problem for a layer of incompressible fluid lying below the atmosphere and above a rigid bottom in the horizontally infinite setting. The fluid dynamics is governed by the incompressible Euler equations with damping and gravity, and the effect of surface tension is neglected on the upper free boundary. We prove the global well-posedness of the problem with the small initial data in both 2D and 3D. One of key ideas here is to make use of the time-weighted dissipation estimates to close the nonlinear energy estimates; in particular, this implies that the Lipschitz norm of the velocity is integrable-in-time, which is significantly different from that of viscous surface waves (Guo and Tice in Anal PDE 6(6):1429–1533, 2013; Wang in Adv Math 374:107330, 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信