最佳扁平带的存在

Simon Blatt, Matteo Raffaelli
{"title":"最佳扁平带的存在","authors":"Simon Blatt, Matteo Raffaelli","doi":"10.1007/s12220-024-01683-w","DOIUrl":null,"url":null,"abstract":"<p>We apply the direct method of the calculus of variations to show that any nonplanar Frenet curve in <span>\\({\\mathbb {R}}^{3}\\)</span> can be extended to an infinitely narrow flat ribbon having <i>minimal</i> bending energy. We also show that, in general, minimizers are not free of planar points, yet such points must be isolated under the mild condition that the torsion does not vanish.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Optimal Flat Ribbons\",\"authors\":\"Simon Blatt, Matteo Raffaelli\",\"doi\":\"10.1007/s12220-024-01683-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We apply the direct method of the calculus of variations to show that any nonplanar Frenet curve in <span>\\\\({\\\\mathbb {R}}^{3}\\\\)</span> can be extended to an infinitely narrow flat ribbon having <i>minimal</i> bending energy. We also show that, in general, minimizers are not free of planar points, yet such points must be isolated under the mild condition that the torsion does not vanish.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01683-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01683-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们运用变分微积分的直接方法证明了任何在 \({\mathbb {R}}^{3}\) 中的非平面 Frenet 曲线都可以扩展为具有最小弯曲能的无限窄平面带。我们还证明,在一般情况下,最小化并不不包含平面点,然而在扭转不消失的温和条件下,这些点必须是孤立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Optimal Flat Ribbons

We apply the direct method of the calculus of variations to show that any nonplanar Frenet curve in \({\mathbb {R}}^{3}\) can be extended to an infinitely narrow flat ribbon having minimal bending energy. We also show that, in general, minimizers are not free of planar points, yet such points must be isolated under the mild condition that the torsion does not vanish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信