{"title":"碳化硅陶瓷和 YW3 的侵蚀模型","authors":"Chunyu Feng, Zhen Wang, Yuelong Liu, Xuefeng Deng, Pei Xiong","doi":"10.1177/09544089241255926","DOIUrl":null,"url":null,"abstract":"In this study, an erosion model of silicon carbide ceramics and YW3 was established by combining experimental and numerical simulation data. This model can be applied for the prediction of erosion in natural gas equipment and transportation systems and also provides ideas for the establishment of erosion models. The erosion model was established by using quartz sand, brown corundum, and glass beads as abrasive materials, and then the accuracy of the erosion model was confirmed by numerical simulations. The results showed that when the abrasive was quartz sand, brown corundum, or glass beads, the erosion angle at which the maximum erosion of silicon carbide and YW3 occurred was related to the type of abrasive. When the abrasive was quartz sand, brown corundum, and glass beads, the velocity index n of silicon carbide was 3.24, 3.66, and 3.32, respectively, and the model constant k was 4.1959 × 10<jats:sup>−11</jats:sup>, 3.6436 × 10<jats:sup>−11</jats:sup>, and 4.1838 × 10<jats:sup>−11</jats:sup>, respectively. The velocity index n of YW3 was 2.29, 2.41, and 1.87, respectively, and the model constant k was 2.6176 × 10<jats:sup>−7</jats:sup>, 3.0017 × 10<jats:sup>−7</jats:sup>, and 3.1040 × 10<jats:sup>−7</jats:sup>, respectively. When the test results were compared with the numerical simulation results, the maximum error for silicon carbide was 6.59%, 7.71%, and 9.25%, respectively, and the maximum error for YW3 was 8.78%, 9.51%, and 5.97%, respectively. Finally, the erosion model of silicon carbide ceramics and YW3 was established via a large number of experiments and numerical simulations. When the target material and abrasive material are the same, it can be directly used for erosion prediction and structure optimization of natural gas equipment. Meanwhile, this paper provides a new idea for the establishment of gas–solid two-phase erosion model, and when the abrasive material and target material change, a new erosion model can be established according to the idea of this paper.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosion model of silicon carbide ceramics and YW3\",\"authors\":\"Chunyu Feng, Zhen Wang, Yuelong Liu, Xuefeng Deng, Pei Xiong\",\"doi\":\"10.1177/09544089241255926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an erosion model of silicon carbide ceramics and YW3 was established by combining experimental and numerical simulation data. This model can be applied for the prediction of erosion in natural gas equipment and transportation systems and also provides ideas for the establishment of erosion models. The erosion model was established by using quartz sand, brown corundum, and glass beads as abrasive materials, and then the accuracy of the erosion model was confirmed by numerical simulations. The results showed that when the abrasive was quartz sand, brown corundum, or glass beads, the erosion angle at which the maximum erosion of silicon carbide and YW3 occurred was related to the type of abrasive. When the abrasive was quartz sand, brown corundum, and glass beads, the velocity index n of silicon carbide was 3.24, 3.66, and 3.32, respectively, and the model constant k was 4.1959 × 10<jats:sup>−11</jats:sup>, 3.6436 × 10<jats:sup>−11</jats:sup>, and 4.1838 × 10<jats:sup>−11</jats:sup>, respectively. The velocity index n of YW3 was 2.29, 2.41, and 1.87, respectively, and the model constant k was 2.6176 × 10<jats:sup>−7</jats:sup>, 3.0017 × 10<jats:sup>−7</jats:sup>, and 3.1040 × 10<jats:sup>−7</jats:sup>, respectively. When the test results were compared with the numerical simulation results, the maximum error for silicon carbide was 6.59%, 7.71%, and 9.25%, respectively, and the maximum error for YW3 was 8.78%, 9.51%, and 5.97%, respectively. Finally, the erosion model of silicon carbide ceramics and YW3 was established via a large number of experiments and numerical simulations. When the target material and abrasive material are the same, it can be directly used for erosion prediction and structure optimization of natural gas equipment. Meanwhile, this paper provides a new idea for the establishment of gas–solid two-phase erosion model, and when the abrasive material and target material change, a new erosion model can be established according to the idea of this paper.\",\"PeriodicalId\":20552,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241255926\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241255926","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In this study, an erosion model of silicon carbide ceramics and YW3 was established by combining experimental and numerical simulation data. This model can be applied for the prediction of erosion in natural gas equipment and transportation systems and also provides ideas for the establishment of erosion models. The erosion model was established by using quartz sand, brown corundum, and glass beads as abrasive materials, and then the accuracy of the erosion model was confirmed by numerical simulations. The results showed that when the abrasive was quartz sand, brown corundum, or glass beads, the erosion angle at which the maximum erosion of silicon carbide and YW3 occurred was related to the type of abrasive. When the abrasive was quartz sand, brown corundum, and glass beads, the velocity index n of silicon carbide was 3.24, 3.66, and 3.32, respectively, and the model constant k was 4.1959 × 10−11, 3.6436 × 10−11, and 4.1838 × 10−11, respectively. The velocity index n of YW3 was 2.29, 2.41, and 1.87, respectively, and the model constant k was 2.6176 × 10−7, 3.0017 × 10−7, and 3.1040 × 10−7, respectively. When the test results were compared with the numerical simulation results, the maximum error for silicon carbide was 6.59%, 7.71%, and 9.25%, respectively, and the maximum error for YW3 was 8.78%, 9.51%, and 5.97%, respectively. Finally, the erosion model of silicon carbide ceramics and YW3 was established via a large number of experiments and numerical simulations. When the target material and abrasive material are the same, it can be directly used for erosion prediction and structure optimization of natural gas equipment. Meanwhile, this paper provides a new idea for the establishment of gas–solid two-phase erosion model, and when the abrasive material and target material change, a new erosion model can be established according to the idea of this paper.
期刊介绍:
The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.