{"title":"论带盒式约束的二次方程程序的精确和非精确 RLT 和 SDP-RLT 放松","authors":"Yuzhou Qiu, E. Alper Yıldırım","doi":"10.1007/s10898-024-01407-y","DOIUrl":null,"url":null,"abstract":"<p>Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set <span>\\(\\{0,\\frac{1}{2},1\\}\\)</span>. We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"13 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On exact and inexact RLT and SDP-RLT relaxations of quadratic programs with box constraints\",\"authors\":\"Yuzhou Qiu, E. Alper Yıldırım\",\"doi\":\"10.1007/s10898-024-01407-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set <span>\\\\(\\\\{0,\\\\frac{1}{2},1\\\\}\\\\)</span>. We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01407-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01407-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
On exact and inexact RLT and SDP-RLT relaxations of quadratic programs with box constraints
Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set \(\{0,\frac{1}{2},1\}\). We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.