{"title":"论带盒式约束的二次方程程序的精确和非精确 RLT 和 SDP-RLT 放松","authors":"Yuzhou Qiu, E. Alper Yıldırım","doi":"10.1007/s10898-024-01407-y","DOIUrl":null,"url":null,"abstract":"<p>Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set <span>\\(\\{0,\\frac{1}{2},1\\}\\)</span>. We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On exact and inexact RLT and SDP-RLT relaxations of quadratic programs with box constraints\",\"authors\":\"Yuzhou Qiu, E. Alper Yıldırım\",\"doi\":\"10.1007/s10898-024-01407-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set <span>\\\\(\\\\{0,\\\\frac{1}{2},1\\\\}\\\\)</span>. We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01407-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01407-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On exact and inexact RLT and SDP-RLT relaxations of quadratic programs with box constraints
Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set \(\{0,\frac{1}{2},1\}\). We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.