敏捷、持续的建筑能源建模和模拟

Philipp Zech, Alexandra Jäger, Georg Fröch, Rainer Pfluger, Ruth Breu
{"title":"敏捷、持续的建筑能源建模和模拟","authors":"Philipp Zech, Alexandra Jäger, Georg Fröch, Rainer Pfluger, Ruth Breu","doi":"10.1177/00375497241251852","DOIUrl":null,"url":null,"abstract":"Digital twins have emerged as highly valuable tools for model-based planning, simulation and optimization over the last couple of years, thereby demonstrating considerable potential for application within the construction industry. The introduction of building information modeling (BIM) has effectively established a standardized approach to representing building models. However, in practice, many of these models currently exhibit limitations as to their quality, specifically concerning the level of detail they encompass. In addition, BIM models too often are locked inside a specific vendor’s tool which readily implies a lack of platform independence, or interoperability, which, however, is essential for facilitating single and regressive, i.e., after a design change, model-based building performance simulations. Model-based engineering has effectively addressed comparable challenges within the domain of software engineering over the past decades by facilitating the integration and interoperability of models from various origins, by capitalizing on model-based tool integration. Prompted by these advantages, this study introduces a model-based tool environment that addresses the aforesaid challenges concerning BIM model quality and interoperability. Taking advantage of our proposed model-based tool environment, we implement an agile, continuous planning process for regressive, model-based building performance simulations, thereby enhancing building energy efficiency planning.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agile, continuous building energy modeling and simulation\",\"authors\":\"Philipp Zech, Alexandra Jäger, Georg Fröch, Rainer Pfluger, Ruth Breu\",\"doi\":\"10.1177/00375497241251852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital twins have emerged as highly valuable tools for model-based planning, simulation and optimization over the last couple of years, thereby demonstrating considerable potential for application within the construction industry. The introduction of building information modeling (BIM) has effectively established a standardized approach to representing building models. However, in practice, many of these models currently exhibit limitations as to their quality, specifically concerning the level of detail they encompass. In addition, BIM models too often are locked inside a specific vendor’s tool which readily implies a lack of platform independence, or interoperability, which, however, is essential for facilitating single and regressive, i.e., after a design change, model-based building performance simulations. Model-based engineering has effectively addressed comparable challenges within the domain of software engineering over the past decades by facilitating the integration and interoperability of models from various origins, by capitalizing on model-based tool integration. Prompted by these advantages, this study introduces a model-based tool environment that addresses the aforesaid challenges concerning BIM model quality and interoperability. Taking advantage of our proposed model-based tool environment, we implement an agile, continuous planning process for regressive, model-based building performance simulations, thereby enhancing building energy efficiency planning.\",\"PeriodicalId\":501452,\"journal\":{\"name\":\"SIMULATION\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIMULATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497241251852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241251852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,数字孪生已成为基于模型的规划、模拟和优化的极具价值的工具,从而显示出在建筑行业应用的巨大潜力。建筑信息模型(BIM)的引入有效地建立了表示建筑模型的标准化方法。然而,在实践中,许多此类模型目前在质量方面存在局限性,特别是在模型所包含的详细程度方面。此外,BIM 模型往往被锁定在特定供应商的工具中,这就意味着缺乏平台独立性或互操作性,而这对于促进单一和递减(即设计变更后)基于模型的建筑性能模拟是至关重要的。在过去的几十年中,基于模型的工程学通过利用基于模型的工具集成,促进了不同来源模型的集成和互操作性,从而有效地解决了软件工程领域中的类似挑战。在这些优势的推动下,本研究引入了基于模型的工具环境,以解决上述有关 BIM 模型质量和互操作性的挑战。利用我们提出的基于模型的工具环境,我们为基于模型的建筑性能模拟实施了一个敏捷、持续的规划流程,从而提高了建筑能效规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agile, continuous building energy modeling and simulation
Digital twins have emerged as highly valuable tools for model-based planning, simulation and optimization over the last couple of years, thereby demonstrating considerable potential for application within the construction industry. The introduction of building information modeling (BIM) has effectively established a standardized approach to representing building models. However, in practice, many of these models currently exhibit limitations as to their quality, specifically concerning the level of detail they encompass. In addition, BIM models too often are locked inside a specific vendor’s tool which readily implies a lack of platform independence, or interoperability, which, however, is essential for facilitating single and regressive, i.e., after a design change, model-based building performance simulations. Model-based engineering has effectively addressed comparable challenges within the domain of software engineering over the past decades by facilitating the integration and interoperability of models from various origins, by capitalizing on model-based tool integration. Prompted by these advantages, this study introduces a model-based tool environment that addresses the aforesaid challenges concerning BIM model quality and interoperability. Taking advantage of our proposed model-based tool environment, we implement an agile, continuous planning process for regressive, model-based building performance simulations, thereby enhancing building energy efficiency planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信