{"title":"将完整图分解为最少边相交树的算法","authors":"Antika Sinha, Sanjoy Kumar Saha, Partha Basuchowdhuri","doi":"arxiv-2405.18506","DOIUrl":null,"url":null,"abstract":"In this work, we study methodical decomposition of an undirected, unweighted\ncomplete graph ($K_n$ of order $n$, size $m$) into minimum number of\nedge-disjoint trees. We find that $x$, a positive integer, is minimum and\n$x=\\lceil\\frac{n}{2}\\rceil$ as the edge set of $K_n$ is decomposed into\nedge-disjoint trees of size sequence $M = \\{m_1,m_2,...,m_x\\}$ where\n$m_i\\le(n-1)$ and $\\Sigma_{i=1}^{x} m_i$ = $\\frac{n(n-1)}{2}$. For decomposing\nthe edge set of $K_n$ into minimum number of edge-disjoint trees, our proposed\nalgorithm takes total $O(m)$ time.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm for the Decomposition of Complete Graph into Minimum Number of Edge-disjoint Trees\",\"authors\":\"Antika Sinha, Sanjoy Kumar Saha, Partha Basuchowdhuri\",\"doi\":\"arxiv-2405.18506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study methodical decomposition of an undirected, unweighted\\ncomplete graph ($K_n$ of order $n$, size $m$) into minimum number of\\nedge-disjoint trees. We find that $x$, a positive integer, is minimum and\\n$x=\\\\lceil\\\\frac{n}{2}\\\\rceil$ as the edge set of $K_n$ is decomposed into\\nedge-disjoint trees of size sequence $M = \\\\{m_1,m_2,...,m_x\\\\}$ where\\n$m_i\\\\le(n-1)$ and $\\\\Sigma_{i=1}^{x} m_i$ = $\\\\frac{n(n-1)}{2}$. For decomposing\\nthe edge set of $K_n$ into minimum number of edge-disjoint trees, our proposed\\nalgorithm takes total $O(m)$ time.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Algorithm for the Decomposition of Complete Graph into Minimum Number of Edge-disjoint Trees
In this work, we study methodical decomposition of an undirected, unweighted
complete graph ($K_n$ of order $n$, size $m$) into minimum number of
edge-disjoint trees. We find that $x$, a positive integer, is minimum and
$x=\lceil\frac{n}{2}\rceil$ as the edge set of $K_n$ is decomposed into
edge-disjoint trees of size sequence $M = \{m_1,m_2,...,m_x\}$ where
$m_i\le(n-1)$ and $\Sigma_{i=1}^{x} m_i$ = $\frac{n(n-1)}{2}$. For decomposing
the edge set of $K_n$ into minimum number of edge-disjoint trees, our proposed
algorithm takes total $O(m)$ time.