均匀超图的狄拉克定理

Pub Date : 2024-06-01 DOI:10.1007/s00373-024-02802-8
Yue Ma, Xinmin Hou, Jun Gao
{"title":"均匀超图的狄拉克定理","authors":"Yue Ma, Xinmin Hou, Jun Gao","doi":"10.1007/s00373-024-02802-8","DOIUrl":null,"url":null,"abstract":"<p>Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order <span>\\(n&gt;2k+1\\)</span> with minimum degree more than <i>k</i> contains a path of length at least <span>\\(2k+1\\)</span>. In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers <i>n</i>, <i>k</i> and <i>r</i>, let <i>H</i> be a connected <i>n</i>-vertex <i>r</i>-graph with no Berge path of length <span>\\(2k+1\\)</span>. (1) If <span>\\(k&gt; r\\ge 4\\)</span> and <span>\\(n&gt;2k+1\\)</span>, then <span>\\(\\delta _1(H)\\le \\left( {\\begin{array}{c}k\\\\ r-1\\end{array}}\\right) \\)</span>. Furthermore, there exist hypergraphs <span>\\(S'_r(n,k), S_r(n,k)\\)</span> and <span>\\(S(sK_{k+1}^{(r)},1)\\)</span> such that the equality holds if and only if <span>\\(S'_r(n,k)\\subseteq H\\subseteq S_r(n,k)\\)</span> or <span>\\(H\\cong S(sK_{k+1}^{(r)},1)\\)</span>; (2) If <span>\\(k\\ge r\\ge 2\\)</span> and <span>\\(n&gt;2k(r-1)\\)</span>, then <span>\\(\\delta _1(H)\\le \\left( {\\begin{array}{c}k\\\\ r-1\\end{array}}\\right) \\)</span>. As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dirac-Type Theorem for Uniform Hypergraphs\",\"authors\":\"Yue Ma, Xinmin Hou, Jun Gao\",\"doi\":\"10.1007/s00373-024-02802-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order <span>\\\\(n&gt;2k+1\\\\)</span> with minimum degree more than <i>k</i> contains a path of length at least <span>\\\\(2k+1\\\\)</span>. In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers <i>n</i>, <i>k</i> and <i>r</i>, let <i>H</i> be a connected <i>n</i>-vertex <i>r</i>-graph with no Berge path of length <span>\\\\(2k+1\\\\)</span>. (1) If <span>\\\\(k&gt; r\\\\ge 4\\\\)</span> and <span>\\\\(n&gt;2k+1\\\\)</span>, then <span>\\\\(\\\\delta _1(H)\\\\le \\\\left( {\\\\begin{array}{c}k\\\\\\\\ r-1\\\\end{array}}\\\\right) \\\\)</span>. Furthermore, there exist hypergraphs <span>\\\\(S'_r(n,k), S_r(n,k)\\\\)</span> and <span>\\\\(S(sK_{k+1}^{(r)},1)\\\\)</span> such that the equality holds if and only if <span>\\\\(S'_r(n,k)\\\\subseteq H\\\\subseteq S_r(n,k)\\\\)</span> or <span>\\\\(H\\\\cong S(sK_{k+1}^{(r)},1)\\\\)</span>; (2) If <span>\\\\(k\\\\ge r\\\\ge 2\\\\)</span> and <span>\\\\(n&gt;2k(r-1)\\\\)</span>, then <span>\\\\(\\\\delta _1(H)\\\\le \\\\left( {\\\\begin{array}{c}k\\\\\\\\ r-1\\\\end{array}}\\\\right) \\\\)</span>. As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02802-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02802-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

狄拉克(Proc Lond Math Soc (3) 2:69-81,1952)证明了最小度大于 k 的每个阶为 \(n>2k+1\)的连通图都包含一条长度至少为 \(2k+1\)的路径。本文给出了狄拉克定理的超图扩展:给定正整数 n、k 和 r,设 H 是一个连通的 n 顶点 r 图,其中没有长度为 \(2k+1\)的 Berge 路径。(1) 如果\(k> r\ge 4\) 并且\(n>2k+1\),那么\(\delta _1(H)\le \left( {\begin{array}{c}k\r-1end{array}\right) \)。此外,存在超图 \(S'_r(n,k), S_r(n,k)\) 和 \(S(sK_{k+1}^{(r)}、1)),使得当且仅当(S'_r(n,k)\subseteq H\subseteq S_r(n,k))或者(H\cong S(sK_{k+1}^{(r)},1)\) 时,相等关系成立;(2) 如果 \(k\ge r\ge 2\) and \(n>2k(r-1)\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right)).作为(1)的应用,我们给出了一个比 Bermond 等人给出的 Berge Hamiltonian 循环的 Dirac 型结果(Hypergraphes Hamiltoniens.In:Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976).Colloq.Internat.CNRS, vol. 260, pp.CNRS, Paris, 1976)或克莱门斯等人(Electron Notes Discrete Math 54:181-186, 2016)分别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Dirac-Type Theorem for Uniform Hypergraphs

Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order \(n>2k+1\) with minimum degree more than k contains a path of length at least \(2k+1\). In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers nk and r, let H be a connected n-vertex r-graph with no Berge path of length \(2k+1\). (1) If \(k> r\ge 4\) and \(n>2k+1\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right) \). Furthermore, there exist hypergraphs \(S'_r(n,k), S_r(n,k)\) and \(S(sK_{k+1}^{(r)},1)\) such that the equality holds if and only if \(S'_r(n,k)\subseteq H\subseteq S_r(n,k)\) or \(H\cong S(sK_{k+1}^{(r)},1)\); (2) If \(k\ge r\ge 2\) and \(n>2k(r-1)\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right) \). As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信