{"title":"均匀超图的狄拉克定理","authors":"Yue Ma, Xinmin Hou, Jun Gao","doi":"10.1007/s00373-024-02802-8","DOIUrl":null,"url":null,"abstract":"<p>Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order <span>\\(n>2k+1\\)</span> with minimum degree more than <i>k</i> contains a path of length at least <span>\\(2k+1\\)</span>. In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers <i>n</i>, <i>k</i> and <i>r</i>, let <i>H</i> be a connected <i>n</i>-vertex <i>r</i>-graph with no Berge path of length <span>\\(2k+1\\)</span>. (1) If <span>\\(k> r\\ge 4\\)</span> and <span>\\(n>2k+1\\)</span>, then <span>\\(\\delta _1(H)\\le \\left( {\\begin{array}{c}k\\\\ r-1\\end{array}}\\right) \\)</span>. Furthermore, there exist hypergraphs <span>\\(S'_r(n,k), S_r(n,k)\\)</span> and <span>\\(S(sK_{k+1}^{(r)},1)\\)</span> such that the equality holds if and only if <span>\\(S'_r(n,k)\\subseteq H\\subseteq S_r(n,k)\\)</span> or <span>\\(H\\cong S(sK_{k+1}^{(r)},1)\\)</span>; (2) If <span>\\(k\\ge r\\ge 2\\)</span> and <span>\\(n>2k(r-1)\\)</span>, then <span>\\(\\delta _1(H)\\le \\left( {\\begin{array}{c}k\\\\ r-1\\end{array}}\\right) \\)</span>. As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dirac-Type Theorem for Uniform Hypergraphs\",\"authors\":\"Yue Ma, Xinmin Hou, Jun Gao\",\"doi\":\"10.1007/s00373-024-02802-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order <span>\\\\(n>2k+1\\\\)</span> with minimum degree more than <i>k</i> contains a path of length at least <span>\\\\(2k+1\\\\)</span>. In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers <i>n</i>, <i>k</i> and <i>r</i>, let <i>H</i> be a connected <i>n</i>-vertex <i>r</i>-graph with no Berge path of length <span>\\\\(2k+1\\\\)</span>. (1) If <span>\\\\(k> r\\\\ge 4\\\\)</span> and <span>\\\\(n>2k+1\\\\)</span>, then <span>\\\\(\\\\delta _1(H)\\\\le \\\\left( {\\\\begin{array}{c}k\\\\\\\\ r-1\\\\end{array}}\\\\right) \\\\)</span>. Furthermore, there exist hypergraphs <span>\\\\(S'_r(n,k), S_r(n,k)\\\\)</span> and <span>\\\\(S(sK_{k+1}^{(r)},1)\\\\)</span> such that the equality holds if and only if <span>\\\\(S'_r(n,k)\\\\subseteq H\\\\subseteq S_r(n,k)\\\\)</span> or <span>\\\\(H\\\\cong S(sK_{k+1}^{(r)},1)\\\\)</span>; (2) If <span>\\\\(k\\\\ge r\\\\ge 2\\\\)</span> and <span>\\\\(n>2k(r-1)\\\\)</span>, then <span>\\\\(\\\\delta _1(H)\\\\le \\\\left( {\\\\begin{array}{c}k\\\\\\\\ r-1\\\\end{array}}\\\\right) \\\\)</span>. As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02802-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02802-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
狄拉克(Proc Lond Math Soc (3) 2:69-81,1952)证明了最小度大于 k 的每个阶为 \(n>2k+1\)的连通图都包含一条长度至少为 \(2k+1\)的路径。本文给出了狄拉克定理的超图扩展:给定正整数 n、k 和 r,设 H 是一个连通的 n 顶点 r 图,其中没有长度为 \(2k+1\)的 Berge 路径。(1) 如果\(k> r\ge 4\) 并且\(n>2k+1\),那么\(\delta _1(H)\le \left( {\begin{array}{c}k\r-1end{array}\right) \)。此外,存在超图 \(S'_r(n,k), S_r(n,k)\) 和 \(S(sK_{k+1}^{(r)}、1)),使得当且仅当(S'_r(n,k)\subseteq H\subseteq S_r(n,k))或者(H\cong S(sK_{k+1}^{(r)},1)\) 时,相等关系成立;(2) 如果 \(k\ge r\ge 2\) and \(n>2k(r-1)\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right)).作为(1)的应用,我们给出了一个比 Bermond 等人给出的 Berge Hamiltonian 循环的 Dirac 型结果(Hypergraphes Hamiltoniens.In:Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976).Colloq.Internat.CNRS, vol. 260, pp.CNRS, Paris, 1976)或克莱门斯等人(Electron Notes Discrete Math 54:181-186, 2016)分别。
Dirac (Proc Lond Math Soc (3) 2:69–81, 1952) proved that every connected graph of order \(n>2k+1\) with minimum degree more than k contains a path of length at least \(2k+1\). In this article, we give a hypergraph extension of Dirac’s theorem: Given positive integers n, k and r, let H be a connected n-vertex r-graph with no Berge path of length \(2k+1\). (1) If \(k> r\ge 4\) and \(n>2k+1\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right) \). Furthermore, there exist hypergraphs \(S'_r(n,k), S_r(n,k)\) and \(S(sK_{k+1}^{(r)},1)\) such that the equality holds if and only if \(S'_r(n,k)\subseteq H\subseteq S_r(n,k)\) or \(H\cong S(sK_{k+1}^{(r)},1)\); (2) If \(k\ge r\ge 2\) and \(n>2k(r-1)\), then \(\delta _1(H)\le \left( {\begin{array}{c}k\\ r-1\end{array}}\right) \). As an application of (1), we give a better lower bound of the minimum degree than the ones in the Dirac-type results for Berge Hamiltonian cycle given by Bermond et al. (Hypergraphes Hamiltoniens. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 39–43. CNRS, Paris, 1976) or Clemens et al. (Electron Notes Discrete Math 54:181–186, 2016), respectively.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.