完整简单拓扑图中不可避免的模式

Pub Date : 2024-05-29 DOI:10.1007/s00454-024-00658-6
Andrew Suk, Ji Zeng
{"title":"完整简单拓扑图中不可避免的模式","authors":"Andrew Suk, Ji Zeng","doi":"10.1007/s00454-024-00658-6","DOIUrl":null,"url":null,"abstract":"<p>We show that every complete <i>n</i>-vertex simple topological graph contains a topological subgraph on at least <span>\\((\\log n)^{1/4 - o(1)}\\)</span> vertices that is weakly isomorphic to the complete convex geometric graph or the complete twisted graph. This is the first improvement on the bound <span>\\(\\Omega (\\log ^{1/8}n)\\)</span> obtained in 2003 by Pach, Solymosi, and Tóth. We also show that every complete <i>n</i>-vertex simple topological graph contains a plane path of length at least <span>\\((\\log n)^{1 -o(1)}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unavoidable Patterns in Complete Simple Topological Graphs\",\"authors\":\"Andrew Suk, Ji Zeng\",\"doi\":\"10.1007/s00454-024-00658-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that every complete <i>n</i>-vertex simple topological graph contains a topological subgraph on at least <span>\\\\((\\\\log n)^{1/4 - o(1)}\\\\)</span> vertices that is weakly isomorphic to the complete convex geometric graph or the complete twisted graph. This is the first improvement on the bound <span>\\\\(\\\\Omega (\\\\log ^{1/8}n)\\\\)</span> obtained in 2003 by Pach, Solymosi, and Tóth. We also show that every complete <i>n</i>-vertex simple topological graph contains a plane path of length at least <span>\\\\((\\\\log n)^{1 -o(1)}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00658-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00658-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个完整的 n 个顶点的简单拓扑图都包含一个至少 \((\log n)^{1/4 - o(1)}\) 个顶点的拓扑子图,它与完整的凸几何图或完整的扭曲图具有弱同构性。这是对 Pach、Solymosi 和 Tóth 于 2003 年得到的边界 \(\Omega (\log ^{1/8}n)\) 的首次改进。我们还证明了每一个完整的 n 顶点简单拓扑图都包含一条长度至少为 \((\log n)^{1 -o(1)}\) 的平面路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unavoidable Patterns in Complete Simple Topological Graphs

分享
查看原文
Unavoidable Patterns in Complete Simple Topological Graphs

We show that every complete n-vertex simple topological graph contains a topological subgraph on at least \((\log n)^{1/4 - o(1)}\) vertices that is weakly isomorphic to the complete convex geometric graph or the complete twisted graph. This is the first improvement on the bound \(\Omega (\log ^{1/8}n)\) obtained in 2003 by Pach, Solymosi, and Tóth. We also show that every complete n-vertex simple topological graph contains a plane path of length at least \((\log n)^{1 -o(1)}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信