二氧化碳流入对砂岩储层质量的影响:中国松辽盆地南部泉头地层案例研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zheng Cao, Chengyan Lin, Chunmei Dong, Lihua Ren, Keyu Liu, Karem Azmy, Hairuo Qing, Jason Cosford
{"title":"二氧化碳流入对砂岩储层质量的影响:中国松辽盆地南部泉头地层案例研究","authors":"Zheng Cao, Chengyan Lin, Chunmei Dong, Lihua Ren, Keyu Liu, Karem Azmy, Hairuo Qing, Jason Cosford","doi":"10.1306/03052418150","DOIUrl":null,"url":null,"abstract":"The CO2-gas reservoirs have been recorded in many petroliferous basins worldwide. However, the impact of deep inorganic CO2 influx on reservoir quality has received little attention. Here, a new set of mineralogical and geochemical data collected from the Lower Cretaceous Quantou Formation sandstones in the southern Songliao Basin are presented to address this issue. The sandstones were broadly subdivided into two zones based on their mineralogical compositions: (1) a normal zone with higher porosity (average 13.7%) and permeability (average 3.27 md) that is located >10 km from the Gudian fault (composed of ferrocalcite, ankerite, quartz, mixed-layer illite/smectite (I/S), kaolinite, illite, and chlorite); and (2) a dawsonite-bearing zone with relatively poor reservoir quality (average 10.1% and 0.4 md) adjacent to the Gudian fault (consisting of dawsonite, ankerite, quartz, I/S, and illite). The carbon sources for dawsonite and ankerite in the dawsonite-bearing zone (δ13C = −5.7‰ to −0.8‰ and δ18O = −20.6‰ to −17.1‰, and Sr = 0.710216–0.712472) are mostly a mix of mantle magmatic CO2 and crustal CO2, with a small amount of organic CO2, which is the opposite of that for the ferrocalcite and ankerite in the normal zone (δ13C = −10.5‰ to −2.3‰, δ18O = −19.3‰ to −14.9‰, and Sr = 0.712060–0.714030). Observations of the dawsonite-bearing zone demonstrate higher contents of carbonate and quartz cements, specific clay mineral types (mixed-layer I/S with Reichweite order of R = 3 and illite), and poor reservoir quality and oil productivity due to the influx of deep inorganic CO2 dating to circa 65–44 Ma.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"54 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of CO2 influx on sandstone reservoir quality: A case study of the Quantou Formation, southern Songliao Basin, China\",\"authors\":\"Zheng Cao, Chengyan Lin, Chunmei Dong, Lihua Ren, Keyu Liu, Karem Azmy, Hairuo Qing, Jason Cosford\",\"doi\":\"10.1306/03052418150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CO2-gas reservoirs have been recorded in many petroliferous basins worldwide. However, the impact of deep inorganic CO2 influx on reservoir quality has received little attention. Here, a new set of mineralogical and geochemical data collected from the Lower Cretaceous Quantou Formation sandstones in the southern Songliao Basin are presented to address this issue. The sandstones were broadly subdivided into two zones based on their mineralogical compositions: (1) a normal zone with higher porosity (average 13.7%) and permeability (average 3.27 md) that is located >10 km from the Gudian fault (composed of ferrocalcite, ankerite, quartz, mixed-layer illite/smectite (I/S), kaolinite, illite, and chlorite); and (2) a dawsonite-bearing zone with relatively poor reservoir quality (average 10.1% and 0.4 md) adjacent to the Gudian fault (consisting of dawsonite, ankerite, quartz, I/S, and illite). The carbon sources for dawsonite and ankerite in the dawsonite-bearing zone (δ13C = −5.7‰ to −0.8‰ and δ18O = −20.6‰ to −17.1‰, and Sr = 0.710216–0.712472) are mostly a mix of mantle magmatic CO2 and crustal CO2, with a small amount of organic CO2, which is the opposite of that for the ferrocalcite and ankerite in the normal zone (δ13C = −10.5‰ to −2.3‰, δ18O = −19.3‰ to −14.9‰, and Sr = 0.712060–0.714030). Observations of the dawsonite-bearing zone demonstrate higher contents of carbonate and quartz cements, specific clay mineral types (mixed-layer I/S with Reichweite order of R = 3 and illite), and poor reservoir quality and oil productivity due to the influx of deep inorganic CO2 dating to circa 65–44 Ma.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1306/03052418150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/03052418150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

全世界许多含油盆地都有二氧化碳气藏的记录。然而,深层无机二氧化碳流入对储层质量的影响却很少受到关注。本文针对这一问题,从松辽盆地南部下白垩统泉头组砂岩中采集了一组新的矿物学和地球化学数据。根据砂岩的矿物成分,将其大致划分为两个区域:(1)孔隙度(平均 13.7%)和渗透率(平均 3.27 md);(2)古滇断层附近的含白云石区,储层质量相对较差(平均 10.1% 和 0.4 md)(由白云石、白云石、石英、I/S 和伊利石组成)。含道逊石区域的道逊石和安克里特石的碳源(δ13C = -5.7‰至 -0.8‰,δ18O = -20.6‰至 -17.1‰,Sr = 0.710216-0.712472)大部分是地幔岩浆CO2和地壳CO2的混合物,还有少量有机CO2,这与正常区的铁闪长岩和铁闪长岩(δ13C=-10.5‰至-2.3‰,δ18O=-19.3‰至-14.9‰,Sr=0.712060-0.714030)的情况正好相反。对含道逊石区域的观测表明,碳酸盐和石英胶结物含量较高,粘土矿物类型特殊(R=3的赖氏维特阶混合层I/S和伊利石),由于深层无机二氧化碳的涌入,储层质量和石油生产力较差,可追溯到约65-44Ma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of CO2 influx on sandstone reservoir quality: A case study of the Quantou Formation, southern Songliao Basin, China
The CO2-gas reservoirs have been recorded in many petroliferous basins worldwide. However, the impact of deep inorganic CO2 influx on reservoir quality has received little attention. Here, a new set of mineralogical and geochemical data collected from the Lower Cretaceous Quantou Formation sandstones in the southern Songliao Basin are presented to address this issue. The sandstones were broadly subdivided into two zones based on their mineralogical compositions: (1) a normal zone with higher porosity (average 13.7%) and permeability (average 3.27 md) that is located >10 km from the Gudian fault (composed of ferrocalcite, ankerite, quartz, mixed-layer illite/smectite (I/S), kaolinite, illite, and chlorite); and (2) a dawsonite-bearing zone with relatively poor reservoir quality (average 10.1% and 0.4 md) adjacent to the Gudian fault (consisting of dawsonite, ankerite, quartz, I/S, and illite). The carbon sources for dawsonite and ankerite in the dawsonite-bearing zone (δ13C = −5.7‰ to −0.8‰ and δ18O = −20.6‰ to −17.1‰, and Sr = 0.710216–0.712472) are mostly a mix of mantle magmatic CO2 and crustal CO2, with a small amount of organic CO2, which is the opposite of that for the ferrocalcite and ankerite in the normal zone (δ13C = −10.5‰ to −2.3‰, δ18O = −19.3‰ to −14.9‰, and Sr = 0.712060–0.714030). Observations of the dawsonite-bearing zone demonstrate higher contents of carbonate and quartz cements, specific clay mineral types (mixed-layer I/S with Reichweite order of R = 3 and illite), and poor reservoir quality and oil productivity due to the influx of deep inorganic CO2 dating to circa 65–44 Ma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信