论巴拿赫空间中非线性微分方程的片断常数控制

A. A. Sedipkov
{"title":"论巴拿赫空间中非线性微分方程的片断常数控制","authors":"A. A. Sedipkov","doi":"10.1134/s105513442402007x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the problem on controlling solutions of nonlinear differential equations with\nunstable equilibrium states. We assume that the operator of the linearized problem is bounded\nand its spectrum is located in the right half-plane. We prove that there exists a control such that\nthe solution remains in a prescribed neighborhood of an equilibrium state as long as required.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Piecewise Constant Control for Nonlinear Differential Equations in a Banach Space\",\"authors\":\"A. A. Sedipkov\",\"doi\":\"10.1134/s105513442402007x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the problem on controlling solutions of nonlinear differential equations with\\nunstable equilibrium states. We assume that the operator of the linearized problem is bounded\\nand its spectrum is located in the right half-plane. We prove that there exists a control such that\\nthe solution remains in a prescribed neighborhood of an equilibrium state as long as required.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s105513442402007x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s105513442402007x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了具有不稳定平衡状态的非线性微分方程的控制解问题。我们假设线性化问题的算子是有界的,并且其谱位于右半平面。我们证明存在这样一种控制:只要满足要求,解就会保持在均衡状态的规定邻域内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Piecewise Constant Control for Nonlinear Differential Equations in a Banach Space

Abstract

We study the problem on controlling solutions of nonlinear differential equations with unstable equilibrium states. We assume that the operator of the linearized problem is bounded and its spectrum is located in the right half-plane. We prove that there exists a control such that the solution remains in a prescribed neighborhood of an equilibrium state as long as required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信