论完全普罗尼问题的局部稳定性

A. A. Lomov
{"title":"论完全普罗尼问题的局部稳定性","authors":"A. A. Lomov","doi":"10.1134/s1055134424020044","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the variational Prony problem on approximating observations\n<span>\\(x \\)</span> by the sum of exponentials. We find critical points\nand the second derivatives of the implicit function <span>\\(\\theta \\)</span> that relates perturbation in <span>\\(x \\)</span> with the corresponding exponents. We suggest\nupper bounds for the second order increments and describe the domain, where the accuracy of\na linear approximation of <span>\\(\\theta \\)</span> is acceptable.\nWe deduce lower estimates of the norm of deviation of <span>\\(\\theta \\)</span> for small perturbations in <span>\\(x \\)</span>. We compare our estimates of this norm with\nupper bounds obtained with the use of Wilkinson’s inequality.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Local Stability in the Complete Prony Problem\",\"authors\":\"A. A. Lomov\",\"doi\":\"10.1134/s1055134424020044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the variational Prony problem on approximating observations\\n<span>\\\\(x \\\\)</span> by the sum of exponentials. We find critical points\\nand the second derivatives of the implicit function <span>\\\\(\\\\theta \\\\)</span> that relates perturbation in <span>\\\\(x \\\\)</span> with the corresponding exponents. We suggest\\nupper bounds for the second order increments and describe the domain, where the accuracy of\\na linear approximation of <span>\\\\(\\\\theta \\\\)</span> is acceptable.\\nWe deduce lower estimates of the norm of deviation of <span>\\\\(\\\\theta \\\\)</span> for small perturbations in <span>\\\\(x \\\\)</span>. We compare our estimates of this norm with\\nupper bounds obtained with the use of Wilkinson’s inequality.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134424020044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134424020044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们考虑了用指数之和近似观测值(x \)的变分普洛尼(Prony)问题。我们找到了临界点和隐函数 \(\theta \)的二阶导数,该函数将 \(x \)中的扰动与相应的指数联系起来。我们提出了二阶增量的上界,并描述了可以接受\(\theta \)线性近似精度的领域。我们推导出了\(\theta \)的小扰动的\(\theta \)偏差规范的较低估计值。我们将这一准则的估计值与使用威尔金森不等式得到的上界进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Local Stability in the Complete Prony Problem

Abstract

We consider the variational Prony problem on approximating observations \(x \) by the sum of exponentials. We find critical points and the second derivatives of the implicit function \(\theta \) that relates perturbation in \(x \) with the corresponding exponents. We suggest upper bounds for the second order increments and describe the domain, where the accuracy of a linear approximation of \(\theta \) is acceptable. We deduce lower estimates of the norm of deviation of \(\theta \) for small perturbations in \(x \). We compare our estimates of this norm with upper bounds obtained with the use of Wilkinson’s inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信