{"title":"基于触觉传感的机器人抓取稳定性分析","authors":"YanJiang Huang, HaoNan Wang, XianMin Zhang","doi":"10.1007/s11431-023-2661-1","DOIUrl":null,"url":null,"abstract":"<p>Tactile signals play a crucial role in enabling robots to successfully manipulate unfamiliar objects. For robots to grasp unknown objects securely and without causing damage, it is essential that they can analyze grasping stability in real time through tactile signals and respond promptly. This study introduces a novel method for analyzing the stability of robotic hand grasping, utilizing the Wilcoxon signed rank test. The efficacy of this method is demonstrated through its static and dynamic performance, and evaluated across a series of experiments. The findings of this research highlight the method’s ability to accurately detect when an object begins to slip from the robot’s grasp. Employing this method allows the gripper to maintain a secure hold on objects by applying the minimal necessary force. It also enables the gripper to dynamically adjust the force it applies in real time, thus preventing the object from slipping during the movement of the robotic arm. Moreover, the gripper demonstrates the ability to stably grasp objects of varied weights and with unknown characteristics, showcasing the versatility and effectiveness of the proposed method.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"2011 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tactile-sensing-based robotic grasping stability analysis\",\"authors\":\"YanJiang Huang, HaoNan Wang, XianMin Zhang\",\"doi\":\"10.1007/s11431-023-2661-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tactile signals play a crucial role in enabling robots to successfully manipulate unfamiliar objects. For robots to grasp unknown objects securely and without causing damage, it is essential that they can analyze grasping stability in real time through tactile signals and respond promptly. This study introduces a novel method for analyzing the stability of robotic hand grasping, utilizing the Wilcoxon signed rank test. The efficacy of this method is demonstrated through its static and dynamic performance, and evaluated across a series of experiments. The findings of this research highlight the method’s ability to accurately detect when an object begins to slip from the robot’s grasp. Employing this method allows the gripper to maintain a secure hold on objects by applying the minimal necessary force. It also enables the gripper to dynamically adjust the force it applies in real time, thus preventing the object from slipping during the movement of the robotic arm. Moreover, the gripper demonstrates the ability to stably grasp objects of varied weights and with unknown characteristics, showcasing the versatility and effectiveness of the proposed method.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-023-2661-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2661-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Tactile signals play a crucial role in enabling robots to successfully manipulate unfamiliar objects. For robots to grasp unknown objects securely and without causing damage, it is essential that they can analyze grasping stability in real time through tactile signals and respond promptly. This study introduces a novel method for analyzing the stability of robotic hand grasping, utilizing the Wilcoxon signed rank test. The efficacy of this method is demonstrated through its static and dynamic performance, and evaluated across a series of experiments. The findings of this research highlight the method’s ability to accurately detect when an object begins to slip from the robot’s grasp. Employing this method allows the gripper to maintain a secure hold on objects by applying the minimal necessary force. It also enables the gripper to dynamically adjust the force it applies in real time, thus preventing the object from slipping during the movement of the robotic arm. Moreover, the gripper demonstrates the ability to stably grasp objects of varied weights and with unknown characteristics, showcasing the versatility and effectiveness of the proposed method.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.