Jiao Chen, Danqing He, Guozhen Lu, Bae Jun Park, Lu Zhang
{"title":"多参数和多线性傅立叶乘法算子的尖锐霍曼德估计值","authors":"Jiao Chen, Danqing He, Guozhen Lu, Bae Jun Park, Lu Zhang","doi":"10.1007/s00208-024-02893-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the Hörmander type theorems for the multi-linear and multi-parameter Fourier multipliers. When the multipliers are characterized by <span>\\(L^u\\)</span>-based Sobolev norms for <span>\\(1<u\\le 2\\)</span>, our results on the smoothness assumptions are sharp in the multi-parameter and bilinear case. In the multi-parameter and multi-linear case, our results are almost sharp. Moreover, even in the one-parameter and multi-linear case, our results improve earlier ones in the literature.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"46 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sharp Hörmander estimate for multi-parameter and multi-linear Fourier multiplier operators\",\"authors\":\"Jiao Chen, Danqing He, Guozhen Lu, Bae Jun Park, Lu Zhang\",\"doi\":\"10.1007/s00208-024-02893-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the Hörmander type theorems for the multi-linear and multi-parameter Fourier multipliers. When the multipliers are characterized by <span>\\\\(L^u\\\\)</span>-based Sobolev norms for <span>\\\\(1<u\\\\le 2\\\\)</span>, our results on the smoothness assumptions are sharp in the multi-parameter and bilinear case. In the multi-parameter and multi-linear case, our results are almost sharp. Moreover, even in the one-parameter and multi-linear case, our results improve earlier ones in the literature.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02893-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02893-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A sharp Hörmander estimate for multi-parameter and multi-linear Fourier multiplier operators
In this paper, we investigate the Hörmander type theorems for the multi-linear and multi-parameter Fourier multipliers. When the multipliers are characterized by \(L^u\)-based Sobolev norms for \(1<u\le 2\), our results on the smoothness assumptions are sharp in the multi-parameter and bilinear case. In the multi-parameter and multi-linear case, our results are almost sharp. Moreover, even in the one-parameter and multi-linear case, our results improve earlier ones in the literature.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.