同构协和与结浮子同构

IF 1.3 2区 数学 Q1 MATHEMATICS
Irving Dai, Jennifer Hom, Matthew Stoffregen, Linh Truong
{"title":"同构协和与结浮子同构","authors":"Irving Dai, Jennifer Hom, Matthew Stoffregen, Linh Truong","doi":"10.1007/s00208-024-02906-9","DOIUrl":null,"url":null,"abstract":"<p>We study the homology concordance group of knots in integer homology three-spheres which bound integer homology four-balls. Using knot Floer homology, we construct an infinite number of <span>\\(\\mathbb {Z}\\)</span>-valued, linearly independent homology concordance homomorphisms which vanish for knots coming from <span>\\(S^3\\)</span>. This shows that the homology concordance group modulo knots coming from <span>\\(S^3\\)</span> contains an infinite-rank summand. The techniques used here generalize the classification program established in previous papers regarding the local equivalence group of knot Floer complexes over <span>\\(\\mathbb {F}[U, V]/(UV)\\)</span>. Our results extend this approach to complexes defined over a broader class of rings.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"327 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homology concordance and knot Floer homology\",\"authors\":\"Irving Dai, Jennifer Hom, Matthew Stoffregen, Linh Truong\",\"doi\":\"10.1007/s00208-024-02906-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the homology concordance group of knots in integer homology three-spheres which bound integer homology four-balls. Using knot Floer homology, we construct an infinite number of <span>\\\\(\\\\mathbb {Z}\\\\)</span>-valued, linearly independent homology concordance homomorphisms which vanish for knots coming from <span>\\\\(S^3\\\\)</span>. This shows that the homology concordance group modulo knots coming from <span>\\\\(S^3\\\\)</span> contains an infinite-rank summand. The techniques used here generalize the classification program established in previous papers regarding the local equivalence group of knot Floer complexes over <span>\\\\(\\\\mathbb {F}[U, V]/(UV)\\\\)</span>. Our results extend this approach to complexes defined over a broader class of rings.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"327 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02906-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02906-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了整数同调三球体中的结的同调群,这些结与整数同调四球相联系。利用结的弗洛尔同调,我们构造了无限多的(\mathbb {Z}\)值的、线性独立的同调协整同态,这些同态对于来自\(S^3\)的结来说是消失的。这表明来自\(S^3\)的节的同调组包含一个无穷级和。这里使用的技术概括了之前论文中建立的关于在 \(\mathbb {F}[U, V]/(UV)\) 上的结浮子复数的局部等价群的分类程序。我们的结果将这一方法扩展到了更广泛的环上定义的复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Homology concordance and knot Floer homology

Homology concordance and knot Floer homology

We study the homology concordance group of knots in integer homology three-spheres which bound integer homology four-balls. Using knot Floer homology, we construct an infinite number of \(\mathbb {Z}\)-valued, linearly independent homology concordance homomorphisms which vanish for knots coming from \(S^3\). This shows that the homology concordance group modulo knots coming from \(S^3\) contains an infinite-rank summand. The techniques used here generalize the classification program established in previous papers regarding the local equivalence group of knot Floer complexes over \(\mathbb {F}[U, V]/(UV)\). Our results extend this approach to complexes defined over a broader class of rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信