Kac 多项式和导数的孔半径

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Hoi H. Nguyen , Oanh Nguyen
{"title":"Kac 多项式和导数的孔半径","authors":"Hoi H. Nguyen ,&nbsp;Oanh Nguyen","doi":"10.1016/j.spa.2024.104386","DOIUrl":null,"url":null,"abstract":"<div><p>The Kac polynomial <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> with independent coefficients of variance 1 is one of the most studied models of random polynomials.</p><p>It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> are of order <span><math><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span>. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104386"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole radii for the Kac polynomials and derivatives\",\"authors\":\"Hoi H. Nguyen ,&nbsp;Oanh Nguyen\",\"doi\":\"10.1016/j.spa.2024.104386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kac polynomial <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> with independent coefficients of variance 1 is one of the most studied models of random polynomials.</p><p>It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> are of order <span><math><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span>. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104386\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000929\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000929","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

方差为 1 的独立系数 Kac 多项式是研究最多的随机多项式模型之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hole radii for the Kac polynomials and derivatives

The Kac polynomial fn(x)=i=0nξixi with independent coefficients of variance 1 is one of the most studied models of random polynomials.

It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at ±1 are of order 1/n. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信