{"title":"Kac 多项式和导数的孔半径","authors":"Hoi H. Nguyen , Oanh Nguyen","doi":"10.1016/j.spa.2024.104386","DOIUrl":null,"url":null,"abstract":"<div><p>The Kac polynomial <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> with independent coefficients of variance 1 is one of the most studied models of random polynomials.</p><p>It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> are of order <span><math><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span>. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104386"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole radii for the Kac polynomials and derivatives\",\"authors\":\"Hoi H. Nguyen , Oanh Nguyen\",\"doi\":\"10.1016/j.spa.2024.104386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kac polynomial <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> with independent coefficients of variance 1 is one of the most studied models of random polynomials.</p><p>It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> are of order <span><math><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span>. We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104386\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000929\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000929","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Hole radii for the Kac polynomials and derivatives
The Kac polynomial with independent coefficients of variance 1 is one of the most studied models of random polynomials.
It is well-known that the empirical measure of the roots converges to the uniform measure on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which there are no roots, with high probability. In a beautiful work (Michelen, 2020), Michelen showed that the holes at are of order . We show that in fact, all the hole radii are of the same order. The same phenomenon is established for the derivatives of the Kac polynomial as well.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.