从不确定性数据中学习:从可能的世界到可能的模型

Jiongli Zhu, Su Feng, Boris Glavic, Babak Salimi
{"title":"从不确定性数据中学习:从可能的世界到可能的模型","authors":"Jiongli Zhu, Su Feng, Boris Glavic, Babak Salimi","doi":"arxiv-2405.18549","DOIUrl":null,"url":null,"abstract":"We introduce an efficient method for learning linear models from uncertain\ndata, where uncertainty is represented as a set of possible variations in the\ndata, leading to predictive multiplicity. Our approach leverages abstract\ninterpretation and zonotopes, a type of convex polytope, to compactly represent\nthese dataset variations, enabling the symbolic execution of gradient descent\non all possible worlds simultaneously. We develop techniques to ensure that\nthis process converges to a fixed point and derive closed-form solutions for\nthis fixed point. Our method provides sound over-approximations of all possible\noptimal models and viable prediction ranges. We demonstrate the effectiveness\nof our approach through theoretical and empirical analysis, highlighting its\npotential to reason about model and prediction uncertainty due to data quality\nissues in training data.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning from Uncertain Data: From Possible Worlds to Possible Models\",\"authors\":\"Jiongli Zhu, Su Feng, Boris Glavic, Babak Salimi\",\"doi\":\"arxiv-2405.18549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an efficient method for learning linear models from uncertain\\ndata, where uncertainty is represented as a set of possible variations in the\\ndata, leading to predictive multiplicity. Our approach leverages abstract\\ninterpretation and zonotopes, a type of convex polytope, to compactly represent\\nthese dataset variations, enabling the symbolic execution of gradient descent\\non all possible worlds simultaneously. We develop techniques to ensure that\\nthis process converges to a fixed point and derive closed-form solutions for\\nthis fixed point. Our method provides sound over-approximations of all possible\\noptimal models and viable prediction ranges. We demonstrate the effectiveness\\nof our approach through theoretical and empirical analysis, highlighting its\\npotential to reason about model and prediction uncertainty due to data quality\\nissues in training data.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种从不确定性数据中学习线性模型的高效方法,其中不确定性被表示为数据中一系列可能的变化,从而导致预测的多重性。我们的方法利用抽象解释和带状多面体(一种凸多面体)来紧凑地表示这些数据集变化,从而能够同时在所有可能的世界中以符号方式执行梯度下降。我们开发了确保这一过程收敛到固定点的技术,并推导出了该固定点的闭式解。我们的方法为所有可能的最优模型和可行的预测范围提供了合理的过度逼近。我们通过理论和实证分析证明了我们方法的有效性,并强调了它在推理因训练数据质量问题而导致的模型和预测不确定性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from Uncertain Data: From Possible Worlds to Possible Models
We introduce an efficient method for learning linear models from uncertain data, where uncertainty is represented as a set of possible variations in the data, leading to predictive multiplicity. Our approach leverages abstract interpretation and zonotopes, a type of convex polytope, to compactly represent these dataset variations, enabling the symbolic execution of gradient descent on all possible worlds simultaneously. We develop techniques to ensure that this process converges to a fixed point and derive closed-form solutions for this fixed point. Our method provides sound over-approximations of all possible optimal models and viable prediction ranges. We demonstrate the effectiveness of our approach through theoretical and empirical analysis, highlighting its potential to reason about model and prediction uncertainty due to data quality issues in training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信