Anna Winnicki, Joseph Lubars, Michael Livesay, R. Srikant
{"title":"前瞻性和近似策略评估在线性值函数近似强化学习中的作用","authors":"Anna Winnicki, Joseph Lubars, Michael Livesay, R. Srikant","doi":"10.1287/opre.2022.0357","DOIUrl":null,"url":null,"abstract":"Operations Research, Ahead of Print. <br/>","PeriodicalId":54680,"journal":{"name":"Operations Research","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Lookahead and Approximate Policy Evaluation in Reinforcement Learning with Linear Value Function Approximation\",\"authors\":\"Anna Winnicki, Joseph Lubars, Michael Livesay, R. Srikant\",\"doi\":\"10.1287/opre.2022.0357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operations Research, Ahead of Print. <br/>\",\"PeriodicalId\":54680,\"journal\":{\"name\":\"Operations Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.0357\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.0357","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
期刊介绍:
Operations Research publishes quality operations research and management science works of interest to the OR practitioner and researcher in three substantive categories: methods, data-based operational science, and the practice of OR. The journal seeks papers reporting underlying data-based principles of operational science, observations and modeling of operating systems, contributions to the methods and models of OR, case histories of applications, review articles, and discussions of the administrative environment, history, policy, practice, future, and arenas of application of operations research.