{"title":"基于小波变换和概率密度演化法的滞回结构多尺度随机优化控制","authors":"Haylim Chha, Yongbo Peng","doi":"10.1108/ec-10-2023-0704","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale stochastic optimal control of hysteretic structures based on wavelet transform and probability density evolution method\",\"authors\":\"Haylim Chha, Yongbo Peng\",\"doi\":\"10.1108/ec-10-2023-0704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.</p><!--/ Abstract__block -->\",\"PeriodicalId\":50522,\"journal\":{\"name\":\"Engineering Computations\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ec-10-2023-0704\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-10-2023-0704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiscale stochastic optimal control of hysteretic structures based on wavelet transform and probability density evolution method
Purpose
Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.
Design/methodology/approach
For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.
Findings
Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.
Originality/value
Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.
期刊介绍:
The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice.
For more information visit: http://www.emeraldgrouppublishing.com/ec.htm