{"title":"医疗物联网框架中的安全轻量级患者生存预测","authors":"Shubh Mittal, Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan Karmakar","doi":"10.1002/nem.2286","DOIUrl":null,"url":null,"abstract":"<p>Thoracic surgeries in major lung resections for primary lung cancer are fraught with potential risks, emphasising the need to understand factors contributing to postoperative mortality. This study investigates the interplay of objective and subjective data in predicting postoperative outcomes to reduce data transmission costs in the Internet of Medical Things (IoMT). Objective metrics, such as forced vital capacity (FVC), offer consistent, quantifiable insights essential for predictive modelling. Conversely, subjective data derived from patient self-reports suggest that the patient's personal experiences are crucial for assessing the quality of life postsurgery. Utilising a dataset from the University of California, Irvine's Machine Learning Repository (UCI), 17 distinct attributes were examined. Using ensemble learning classifiers, the extra trees classifier is superior when utilising all features, achieving an accuracy of 0.92. Combining select subjective features, specifically PRE6, PRE8 and AGE (demographic), with objective data, yielded a comparable accuracy of 0.91. Feature importance analysis further highlights the significance of features like PRE5, PRE4 and AGE. This suggests potential redundancies in the full feature set, emphasising the importance of feature selection. Importantly, when compared with existing literature, this study's findings offer insights into the future of predictive modelling in thoracic surgeries, with implications for the rapidly evolving field of the IoMT.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.2286","citationCount":"0","resultStr":"{\"title\":\"A secure and light-weight patient survival prediction in Internet of Medical Things framework\",\"authors\":\"Shubh Mittal, Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan Karmakar\",\"doi\":\"10.1002/nem.2286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thoracic surgeries in major lung resections for primary lung cancer are fraught with potential risks, emphasising the need to understand factors contributing to postoperative mortality. This study investigates the interplay of objective and subjective data in predicting postoperative outcomes to reduce data transmission costs in the Internet of Medical Things (IoMT). Objective metrics, such as forced vital capacity (FVC), offer consistent, quantifiable insights essential for predictive modelling. Conversely, subjective data derived from patient self-reports suggest that the patient's personal experiences are crucial for assessing the quality of life postsurgery. Utilising a dataset from the University of California, Irvine's Machine Learning Repository (UCI), 17 distinct attributes were examined. Using ensemble learning classifiers, the extra trees classifier is superior when utilising all features, achieving an accuracy of 0.92. Combining select subjective features, specifically PRE6, PRE8 and AGE (demographic), with objective data, yielded a comparable accuracy of 0.91. Feature importance analysis further highlights the significance of features like PRE5, PRE4 and AGE. This suggests potential redundancies in the full feature set, emphasising the importance of feature selection. Importantly, when compared with existing literature, this study's findings offer insights into the future of predictive modelling in thoracic surgeries, with implications for the rapidly evolving field of the IoMT.</p>\",\"PeriodicalId\":14154,\"journal\":{\"name\":\"International Journal of Network Management\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.2286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Network Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nem.2286\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A secure and light-weight patient survival prediction in Internet of Medical Things framework
Thoracic surgeries in major lung resections for primary lung cancer are fraught with potential risks, emphasising the need to understand factors contributing to postoperative mortality. This study investigates the interplay of objective and subjective data in predicting postoperative outcomes to reduce data transmission costs in the Internet of Medical Things (IoMT). Objective metrics, such as forced vital capacity (FVC), offer consistent, quantifiable insights essential for predictive modelling. Conversely, subjective data derived from patient self-reports suggest that the patient's personal experiences are crucial for assessing the quality of life postsurgery. Utilising a dataset from the University of California, Irvine's Machine Learning Repository (UCI), 17 distinct attributes were examined. Using ensemble learning classifiers, the extra trees classifier is superior when utilising all features, achieving an accuracy of 0.92. Combining select subjective features, specifically PRE6, PRE8 and AGE (demographic), with objective data, yielded a comparable accuracy of 0.91. Feature importance analysis further highlights the significance of features like PRE5, PRE4 and AGE. This suggests potential redundancies in the full feature set, emphasising the importance of feature selection. Importantly, when compared with existing literature, this study's findings offer insights into the future of predictive modelling in thoracic surgeries, with implications for the rapidly evolving field of the IoMT.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.