{"title":"宏观经济冲击、市场不确定性和投机泡沫:基于分解的印度股市预测模型","authors":"Indranil Ghosh, Tamal Datta Chaudhuri, Sunita Sarkar, Somnath Mukhopadhyay, Anol Roy","doi":"10.1108/cfri-09-2023-0237","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Stock markets are essential for households for wealth creation and for firms for raising financial resources for capacity expansion and growth. Market participants, therefore, need an understanding of stock price movements. Stock market indices and individual stock prices reflect the macroeconomic environment and are subject to external and internal shocks. It is important to disentangle the impact of macroeconomic shocks, market uncertainty and speculative elements and examine them separately for prediction. To aid households, firms and policymakers, the paper proposes a granular decomposition-based prediction framework for different time periods in India, characterized by different market states with varying degrees of uncertainty.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Ensemble empirical mode decomposition (EEMD) and fuzzy-C-means (FCM) clustering algorithms are used to decompose stock prices into short, medium and long-run components. Multiverse optimization (MVO) is used to combine extreme gradient boosting regression (XGBR), Facebook Prophet and support vector regression (SVR) for forecasting. Application of explainable artificial intelligence (XAI) helps identify feature contributions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>We find that historic volatility, expected market uncertainty, oscillators and macroeconomic variables explain different components of stock prices and their impact varies with the industry and the market state. The proposed framework yields efficient predictions even during the COVID-19 pandemic and the Russia–Ukraine war period. Efficiency measures indicate the robustness of the approach. Findings suggest that large-cap stocks are relatively more predictable.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The paper is on Indian stock markets. Future work will extend it to other stock markets and other financial products.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The proposed methodology will be of practical use for traders, fund managers and financial advisors. Policymakers may find it useful for assessing the impact of macroeconomic shocks and reducing market volatility.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Development of a granular decomposition-based forecasting framework and separating the effects of explanatory variables in different time scales and macroeconomic periods.</p><!--/ Abstract__block -->","PeriodicalId":44440,"journal":{"name":"China Finance Review International","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroeconomic shocks, market uncertainty and speculative bubbles: a decomposition-based predictive model of Indian stock markets\",\"authors\":\"Indranil Ghosh, Tamal Datta Chaudhuri, Sunita Sarkar, Somnath Mukhopadhyay, Anol Roy\",\"doi\":\"10.1108/cfri-09-2023-0237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Stock markets are essential for households for wealth creation and for firms for raising financial resources for capacity expansion and growth. Market participants, therefore, need an understanding of stock price movements. Stock market indices and individual stock prices reflect the macroeconomic environment and are subject to external and internal shocks. It is important to disentangle the impact of macroeconomic shocks, market uncertainty and speculative elements and examine them separately for prediction. To aid households, firms and policymakers, the paper proposes a granular decomposition-based prediction framework for different time periods in India, characterized by different market states with varying degrees of uncertainty.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Ensemble empirical mode decomposition (EEMD) and fuzzy-C-means (FCM) clustering algorithms are used to decompose stock prices into short, medium and long-run components. Multiverse optimization (MVO) is used to combine extreme gradient boosting regression (XGBR), Facebook Prophet and support vector regression (SVR) for forecasting. Application of explainable artificial intelligence (XAI) helps identify feature contributions.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>We find that historic volatility, expected market uncertainty, oscillators and macroeconomic variables explain different components of stock prices and their impact varies with the industry and the market state. The proposed framework yields efficient predictions even during the COVID-19 pandemic and the Russia–Ukraine war period. Efficiency measures indicate the robustness of the approach. Findings suggest that large-cap stocks are relatively more predictable.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>The paper is on Indian stock markets. Future work will extend it to other stock markets and other financial products.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The proposed methodology will be of practical use for traders, fund managers and financial advisors. Policymakers may find it useful for assessing the impact of macroeconomic shocks and reducing market volatility.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Development of a granular decomposition-based forecasting framework and separating the effects of explanatory variables in different time scales and macroeconomic periods.</p><!--/ Abstract__block -->\",\"PeriodicalId\":44440,\"journal\":{\"name\":\"China Finance Review International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Finance Review International\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/cfri-09-2023-0237\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Finance Review International","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/cfri-09-2023-0237","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Macroeconomic shocks, market uncertainty and speculative bubbles: a decomposition-based predictive model of Indian stock markets
Purpose
Stock markets are essential for households for wealth creation and for firms for raising financial resources for capacity expansion and growth. Market participants, therefore, need an understanding of stock price movements. Stock market indices and individual stock prices reflect the macroeconomic environment and are subject to external and internal shocks. It is important to disentangle the impact of macroeconomic shocks, market uncertainty and speculative elements and examine them separately for prediction. To aid households, firms and policymakers, the paper proposes a granular decomposition-based prediction framework for different time periods in India, characterized by different market states with varying degrees of uncertainty.
Design/methodology/approach
Ensemble empirical mode decomposition (EEMD) and fuzzy-C-means (FCM) clustering algorithms are used to decompose stock prices into short, medium and long-run components. Multiverse optimization (MVO) is used to combine extreme gradient boosting regression (XGBR), Facebook Prophet and support vector regression (SVR) for forecasting. Application of explainable artificial intelligence (XAI) helps identify feature contributions.
Findings
We find that historic volatility, expected market uncertainty, oscillators and macroeconomic variables explain different components of stock prices and their impact varies with the industry and the market state. The proposed framework yields efficient predictions even during the COVID-19 pandemic and the Russia–Ukraine war period. Efficiency measures indicate the robustness of the approach. Findings suggest that large-cap stocks are relatively more predictable.
Research limitations/implications
The paper is on Indian stock markets. Future work will extend it to other stock markets and other financial products.
Practical implications
The proposed methodology will be of practical use for traders, fund managers and financial advisors. Policymakers may find it useful for assessing the impact of macroeconomic shocks and reducing market volatility.
Originality/value
Development of a granular decomposition-based forecasting framework and separating the effects of explanatory variables in different time scales and macroeconomic periods.
期刊介绍:
China Finance Review International publishes original and high-quality theoretical and empirical articles focusing on financial and economic issues arising from China's reform, opening-up, economic development, and system transformation. The journal serves as a platform for exchange between Chinese finance scholars and international financial economists, covering a wide range of topics including monetary policy, banking, international trade and finance, corporate finance, asset pricing, market microstructure, corporate governance, incentive studies, fiscal policy, public management, and state-owned enterprise reform.