基于通量的 HDG 方法

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Issei Oikawa
{"title":"基于通量的 HDG 方法","authors":"Issei Oikawa","doi":"10.1002/num.23117","DOIUrl":null,"url":null,"abstract":"In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flux‐based HDG method\",\"authors\":\"Issei Oikawa\",\"doi\":\"10.1002/num.23117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对稳态扩散问题提出了基于通量的可杂化非连续伽勒金(HDG)方法,并通过让稳定参数趋于无穷大提出了一种新方法。假设存在 inf-sup 条件,我们证明了该方法的拟合优度和最优阶误差估计。我们证明了一些三角形元素满足 inf-sup 条件。我们还提供了数值结果来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flux‐based HDG method
In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信