{"title":"基于通量的 HDG 方法","authors":"Issei Oikawa","doi":"10.1002/num.23117","DOIUrl":null,"url":null,"abstract":"In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flux‐based HDG method\",\"authors\":\"Issei Oikawa\",\"doi\":\"10.1002/num.23117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In this article, we present a flux‐based formulation of the hybridizable discontinuous Galerkin (HDG) method for steady‐state diffusion problems and propose a new method derived by letting a stabilization parameter tend to infinity. Assuming an inf‐sup condition, we prove its well‐posedness and error estimates of optimal order. We show that the inf‐sup condition is satisfied by some triangular elements. Numerical results are also provided to support our theoretical results.