HLOB -- 限价订单簿中的信息持久性和结构

Antonio Briola, Silvia Bartolucci, Tomaso Aste
{"title":"HLOB -- 限价订单簿中的信息持久性和结构","authors":"Antonio Briola, Silvia Bartolucci, Tomaso Aste","doi":"arxiv-2405.18938","DOIUrl":null,"url":null,"abstract":"We introduce a novel large-scale deep learning model for Limit Order Book\nmid-price changes forecasting, and we name it `HLOB'. This architecture (i)\nexploits the information encoded by an Information Filtering Network, namely\nthe Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial\ndependency structures among volume levels; and (ii) guarantees deterministic\ndesign choices to handle the complexity of the underlying system by drawing\ninspiration from the groundbreaking class of Homological Convolutional Neural\nNetworks. We test our model against 9 state-of-the-art deep learning\nalternatives on 3 real-world Limit Order Book datasets, each including 15\nstocks traded on the NASDAQ exchange, and we systematically characterize the\nscenarios where HLOB outperforms state-of-the-art architectures. Our approach\nsheds new light on the spatial distribution of information in Limit Order Books\nand on its degradation over increasing prediction horizons, narrowing the gap\nbetween microstructural modeling and deep learning-based forecasting in\nhigh-frequency financial markets.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HLOB -- Information Persistence and Structure in Limit Order Books\",\"authors\":\"Antonio Briola, Silvia Bartolucci, Tomaso Aste\",\"doi\":\"arxiv-2405.18938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel large-scale deep learning model for Limit Order Book\\nmid-price changes forecasting, and we name it `HLOB'. This architecture (i)\\nexploits the information encoded by an Information Filtering Network, namely\\nthe Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial\\ndependency structures among volume levels; and (ii) guarantees deterministic\\ndesign choices to handle the complexity of the underlying system by drawing\\ninspiration from the groundbreaking class of Homological Convolutional Neural\\nNetworks. We test our model against 9 state-of-the-art deep learning\\nalternatives on 3 real-world Limit Order Book datasets, each including 15\\nstocks traded on the NASDAQ exchange, and we systematically characterize the\\nscenarios where HLOB outperforms state-of-the-art architectures. Our approach\\nsheds new light on the spatial distribution of information in Limit Order Books\\nand on its degradation over increasing prediction horizons, narrowing the gap\\nbetween microstructural modeling and deep learning-based forecasting in\\nhigh-frequency financial markets.\",\"PeriodicalId\":501478,\"journal\":{\"name\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种用于限价订单簿中间价格变化预测的新型大规模深度学习模型,并将其命名为 "HLOB"。该架构(i)利用信息过滤网络(即三角最大过滤图)编码的信息,揭示了成交量级别之间更深层次的非三角依赖结构;(ii)通过从开创性的同调卷积神经网络中汲取灵感,保证了处理底层系统复杂性的确定性设计选择。我们在 3 个真实世界的限价订单簿数据集(每个数据集包括在纳斯达克交易所交易的 15 种股票)上测试了我们的模型与 9 种最先进的深度学习替代方法,并系统地描述了 HLOB 优于最先进架构的场景。我们的方法揭示了限价订单簿中信息的空间分布,以及随着预测视野的增加信息的退化,缩小了微观结构建模和基于深度学习的高频金融市场预测之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HLOB -- Information Persistence and Structure in Limit Order Books
We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting, and we name it `HLOB'. This architecture (i) exploits the information encoded by an Information Filtering Network, namely the Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial dependency structures among volume levels; and (ii) guarantees deterministic design choices to handle the complexity of the underlying system by drawing inspiration from the groundbreaking class of Homological Convolutional Neural Networks. We test our model against 9 state-of-the-art deep learning alternatives on 3 real-world Limit Order Book datasets, each including 15 stocks traded on the NASDAQ exchange, and we systematically characterize the scenarios where HLOB outperforms state-of-the-art architectures. Our approach sheds new light on the spatial distribution of information in Limit Order Books and on its degradation over increasing prediction horizons, narrowing the gap between microstructural modeling and deep learning-based forecasting in high-frequency financial markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信