{"title":"耦合薛定谔系统的符号变化解法","authors":"Jing Zhang","doi":"10.1186/s13661-024-01881-z","DOIUrl":null,"url":null,"abstract":"In this paper we study the following nonlinear Schrödinger system: $$ \\textstyle\\begin{cases} -\\Delta u+\\alpha u = \\vert u \\vert ^{p-1}u+\\frac{2}{q+1} \\lambda \\vert u \\vert ^{ \\frac{p-3}{2}}u \\vert v \\vert ^{\\frac{q+1}{2}},\\quad x \\in \\mathbb{R}^{3}, \\\\ -\\Delta v+\\beta v = \\vert v \\vert ^{q-1}v+\\frac{2}{p+1} \\lambda \\vert u \\vert ^{ \\frac{p+1}{2}} \\vert v \\vert ^{\\frac{q-3}{2}}v ,\\quad x \\in \\mathbb{R}^{3}, \\\\ u(x)\\rightarrow 0,\\qquad v(x)\\rightarrow 0,\\quad \\text{as } \\vert x \\vert \\rightarrow \\infty , \\end{cases} $$ where $3\\leq p, q<5$ , α, β are positive parameters. We show that there exists $\\lambda _{k}>0$ such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\\in \\mathbb{N}$ and $\\lambda \\in (0, \\lambda _{k})$ . Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\\lambda \\in (0, \\lambda _{0})$ where $\\lambda _{0}\\in (0, \\lambda _{1}]$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign-changing solutions for coupled Schrödinger system\",\"authors\":\"Jing Zhang\",\"doi\":\"10.1186/s13661-024-01881-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the following nonlinear Schrödinger system: $$ \\\\textstyle\\\\begin{cases} -\\\\Delta u+\\\\alpha u = \\\\vert u \\\\vert ^{p-1}u+\\\\frac{2}{q+1} \\\\lambda \\\\vert u \\\\vert ^{ \\\\frac{p-3}{2}}u \\\\vert v \\\\vert ^{\\\\frac{q+1}{2}},\\\\quad x \\\\in \\\\mathbb{R}^{3}, \\\\\\\\ -\\\\Delta v+\\\\beta v = \\\\vert v \\\\vert ^{q-1}v+\\\\frac{2}{p+1} \\\\lambda \\\\vert u \\\\vert ^{ \\\\frac{p+1}{2}} \\\\vert v \\\\vert ^{\\\\frac{q-3}{2}}v ,\\\\quad x \\\\in \\\\mathbb{R}^{3}, \\\\\\\\ u(x)\\\\rightarrow 0,\\\\qquad v(x)\\\\rightarrow 0,\\\\quad \\\\text{as } \\\\vert x \\\\vert \\\\rightarrow \\\\infty , \\\\end{cases} $$ where $3\\\\leq p, q<5$ , α, β are positive parameters. We show that there exists $\\\\lambda _{k}>0$ such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\\\\in \\\\mathbb{N}$ and $\\\\lambda \\\\in (0, \\\\lambda _{k})$ . Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\\\\lambda \\\\in (0, \\\\lambda _{0})$ where $\\\\lambda _{0}\\\\in (0, \\\\lambda _{1}]$ .\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01881-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01881-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本文将研究以下非线性薛定谔系统: $$ (textstyle\begin{cases} -\Delta u+\alpha u = \vert u \vert ^{p-1}u+\frac{2}{q+1}\lambda \vert u \vert ^{\frac{p-3}{2}}u \vert v \vert ^{\frac{q+1}{2}}, \quad x \in \mathbb{R}^{3}, \\ -\Delta v+\beta v = \vert v \vert ^{q-1}v+\frac{2}{p+1}\vert u \vert ^{ \frac{p+1}{2}\vert v vert ^{\frac{q-3}{2}v ,\quad x \in \mathbb{R}^{3}, \ u(x)\rightarrow 0,\qquad v(x)\rightarrow 0,\quad \text{as }\vert x \vert \rightarrow \infty , \end{cases} $$ 其中 $3\leq p, q0$ 使得方程在每个 $k\in \mathbb{N}$ 和 $\lambda \in (0, \lambda _{k})$ 中至少有 k 个径向对称的符号变化解和至少 k 个半径解。此外,我们证明了每个 $\lambda \in (0, \lambda _{0})$(其中 $\lambda _{0}\in(0, \lambda _{1}]$)都存在能量最小的径向对称符号变化解。
Sign-changing solutions for coupled Schrödinger system
In this paper we study the following nonlinear Schrödinger system: $$ \textstyle\begin{cases} -\Delta u+\alpha u = \vert u \vert ^{p-1}u+\frac{2}{q+1} \lambda \vert u \vert ^{ \frac{p-3}{2}}u \vert v \vert ^{\frac{q+1}{2}},\quad x \in \mathbb{R}^{3}, \\ -\Delta v+\beta v = \vert v \vert ^{q-1}v+\frac{2}{p+1} \lambda \vert u \vert ^{ \frac{p+1}{2}} \vert v \vert ^{\frac{q-3}{2}}v ,\quad x \in \mathbb{R}^{3}, \\ u(x)\rightarrow 0,\qquad v(x)\rightarrow 0,\quad \text{as } \vert x \vert \rightarrow \infty , \end{cases} $$ where $3\leq p, q<5$ , α, β are positive parameters. We show that there exists $\lambda _{k}>0$ such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\in \mathbb{N}$ and $\lambda \in (0, \lambda _{k})$ . Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\lambda \in (0, \lambda _{0})$ where $\lambda _{0}\in (0, \lambda _{1}]$ .
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.