利用 AD5941 设计和实现经济高效的便携式阻抗分析仪装置

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ngoc-Luan Tran, Ngoc-Quan Ha-Phan, Thien-Luan Phan, Congo Tak Shing Ching, Minh-Khue Ha
{"title":"利用 AD5941 设计和实现经济高效的便携式阻抗分析仪装置","authors":"Ngoc-Luan Tran,&nbsp;Ngoc-Quan Ha-Phan,&nbsp;Thien-Luan Phan,&nbsp;Congo Tak Shing Ching,&nbsp;Minh-Khue Ha","doi":"10.1002/tee.24134","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a cost-effective, small-size, and portable impedance analyzer using the AD5941 Analog Front End (AFE) that makes frequency sweep measurement for various applications. The design utilizes a microcontroller and an AD5941 circuit for impedance measurement. The AD541 is a high precision impedance converter system that consists of a 16-bit, 1.6 MSPS, analog to digital converter (ADC), an integrated waveform generator, and a digital signal processing (DSP) block. The AD5941 has many advantages over the AD5933 which was used in numerous studies in the past decade. Also, the device implements the four-wire impedance method which is an impedance measuring technique that reduces the effect of electrodes to achieve higher accuracy. A supporting Graphic User Interface (GUI) software is employed to control the Impedance Analyzer device and to visualize the measurement. This impedance analyzer achieves a frequency resolution of 0.015 Hz and can generate sinusoid up to 200 kHz. In frequency range from 10 kHz to 150 kHz, the device can measure impedance in the range of 10 Ω–100 kΩ with less than 4.3% of error in comparison with benchtop impedance analyzer, Microtest 6632. Moreover, our impedance measurement device has undergone testing involving human calf measurements and electrochemical quantification, particularly for estimating Sodium Chlorite. The experimental outcomes demonstrate that our design not only fulfills the criteria of an impedance analyzer device but also performs effectively across diverse applications. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"19 10","pages":"1730-1736"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of a Cost-Effective, Portable Impedance Analyzer Device with AD5941\",\"authors\":\"Ngoc-Luan Tran,&nbsp;Ngoc-Quan Ha-Phan,&nbsp;Thien-Luan Phan,&nbsp;Congo Tak Shing Ching,&nbsp;Minh-Khue Ha\",\"doi\":\"10.1002/tee.24134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a cost-effective, small-size, and portable impedance analyzer using the AD5941 Analog Front End (AFE) that makes frequency sweep measurement for various applications. The design utilizes a microcontroller and an AD5941 circuit for impedance measurement. The AD541 is a high precision impedance converter system that consists of a 16-bit, 1.6 MSPS, analog to digital converter (ADC), an integrated waveform generator, and a digital signal processing (DSP) block. The AD5941 has many advantages over the AD5933 which was used in numerous studies in the past decade. Also, the device implements the four-wire impedance method which is an impedance measuring technique that reduces the effect of electrodes to achieve higher accuracy. A supporting Graphic User Interface (GUI) software is employed to control the Impedance Analyzer device and to visualize the measurement. This impedance analyzer achieves a frequency resolution of 0.015 Hz and can generate sinusoid up to 200 kHz. In frequency range from 10 kHz to 150 kHz, the device can measure impedance in the range of 10 Ω–100 kΩ with less than 4.3% of error in comparison with benchtop impedance analyzer, Microtest 6632. Moreover, our impedance measurement device has undergone testing involving human calf measurements and electrochemical quantification, particularly for estimating Sodium Chlorite. The experimental outcomes demonstrate that our design not only fulfills the criteria of an impedance analyzer device but also performs effectively across diverse applications. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>\",\"PeriodicalId\":13435,\"journal\":{\"name\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"volume\":\"19 10\",\"pages\":\"1730-1736\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tee.24134\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Transactions on Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tee.24134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种采用 AD5941 模拟前端 (AFE) 的高性价比、小型便携式阻抗分析仪,可为各种应用提供扫频测量。该设计利用微控制器和 AD5941 电路进行阻抗测量。AD541 是一个高精度阻抗转换器系统,由一个 16 位、1.6 MSPS 模数转换器 (ADC)、一个集成波形发生器和一个数字信号处理 (DSP) 块组成。AD5941 与 AD5933 相比有许多优势,后者在过去十年中被用于多项研究。此外,该器件还实现了四线阻抗法,这是一种阻抗测量技术,可减少电极的影响,从而实现更高的精度。该仪器采用图形用户界面(GUI)软件来控制阻抗分析仪,并使测量结果可视化。该阻抗分析仪的频率分辨率为 0.015 Hz,可产生高达 200 kHz 的正弦波。在 10 kHz 至 150 kHz 的频率范围内,与台式阻抗分析仪 Microtest 6632 相比,该装置可测量 10 Ω-100 kΩ 范围内的阻抗,误差小于 4.3%。此外,我们的阻抗测量装置还经过了人体小腿测量和电化学定量测试,特别是在估算亚氯酸钠方面。实验结果表明,我们的设计不仅符合阻抗分析仪设备的标准,还能在各种应用中有效发挥作用。© 2024 日本电气工程师学会和 Wiley Periodicals LLC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of a Cost-Effective, Portable Impedance Analyzer Device with AD5941

This study proposes a cost-effective, small-size, and portable impedance analyzer using the AD5941 Analog Front End (AFE) that makes frequency sweep measurement for various applications. The design utilizes a microcontroller and an AD5941 circuit for impedance measurement. The AD541 is a high precision impedance converter system that consists of a 16-bit, 1.6 MSPS, analog to digital converter (ADC), an integrated waveform generator, and a digital signal processing (DSP) block. The AD5941 has many advantages over the AD5933 which was used in numerous studies in the past decade. Also, the device implements the four-wire impedance method which is an impedance measuring technique that reduces the effect of electrodes to achieve higher accuracy. A supporting Graphic User Interface (GUI) software is employed to control the Impedance Analyzer device and to visualize the measurement. This impedance analyzer achieves a frequency resolution of 0.015 Hz and can generate sinusoid up to 200 kHz. In frequency range from 10 kHz to 150 kHz, the device can measure impedance in the range of 10 Ω–100 kΩ with less than 4.3% of error in comparison with benchtop impedance analyzer, Microtest 6632. Moreover, our impedance measurement device has undergone testing involving human calf measurements and electrochemical quantification, particularly for estimating Sodium Chlorite. The experimental outcomes demonstrate that our design not only fulfills the criteria of an impedance analyzer device but also performs effectively across diverse applications. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEJ Transactions on Electrical and Electronic Engineering
IEEJ Transactions on Electrical and Electronic Engineering 工程技术-工程:电子与电气
CiteScore
2.70
自引率
10.00%
发文量
199
审稿时长
4.3 months
期刊介绍: IEEJ Transactions on Electrical and Electronic Engineering (hereinafter called TEEE ) publishes 6 times per year as an official journal of the Institute of Electrical Engineers of Japan (hereinafter "IEEJ"). This peer-reviewed journal contains original research papers and review articles on the most important and latest technological advances in core areas of Electrical and Electronic Engineering and in related disciplines. The journal also publishes short communications reporting on the results of the latest research activities TEEE ) aims to provide a new forum for IEEJ members in Japan as well as fellow researchers in Electrical and Electronic Engineering from around the world to exchange ideas and research findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信