准凸多目标优化的带准距离的非精确近点法

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiaopeng Zhao, Huijuan Ji, Debdas Ghosh, Jen-Chih Yao
{"title":"准凸多目标优化的带准距离的非精确近点法","authors":"Xiaopeng Zhao, Huijuan Ji, Debdas Ghosh, Jen-Chih Yao","doi":"10.1007/s11117-024-01057-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, an inexact proximal point algorithm is proposed for solving unconstrained multiobjective optimization problems with locally Lipschitz and quasi-convex objective functions. In this algorithm, we use quasi-distance in the regularization term and consider the <span>\\(\\varepsilon \\)</span>-approximate solution of the scalarization subproblem as well as the <span>\\(\\varepsilon \\)</span>-subdifferential in the optimality condition of the subproblem. This algorithm is shown to be well-defined. Then, it is proved that each accumulation point, if any, of the sequence generated by the algorithm is a Pareto-Clarke critical point of the problem.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inexact proximal point method with quasi-distance for quasi-convex multiobjective optimization\",\"authors\":\"Xiaopeng Zhao, Huijuan Ji, Debdas Ghosh, Jen-Chih Yao\",\"doi\":\"10.1007/s11117-024-01057-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, an inexact proximal point algorithm is proposed for solving unconstrained multiobjective optimization problems with locally Lipschitz and quasi-convex objective functions. In this algorithm, we use quasi-distance in the regularization term and consider the <span>\\\\(\\\\varepsilon \\\\)</span>-approximate solution of the scalarization subproblem as well as the <span>\\\\(\\\\varepsilon \\\\)</span>-subdifferential in the optimality condition of the subproblem. This algorithm is shown to be well-defined. Then, it is proved that each accumulation point, if any, of the sequence generated by the algorithm is a Pareto-Clarke critical point of the problem.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01057-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01057-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种非精确近似点算法,用于求解具有局部 Lipschitz 和准凸性目标函数的无约束多目标优化问题。在该算法中,我们在正则化项中使用了准距离,并考虑了标量化子问题的近似解以及子问题优化条件中的(\\varepsilon \)子差分。该算法定义明确。然后,证明了算法产生的序列中的每个累积点(如果有的话)都是问题的帕累托-克拉克临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inexact proximal point method with quasi-distance for quasi-convex multiobjective optimization

In this work, an inexact proximal point algorithm is proposed for solving unconstrained multiobjective optimization problems with locally Lipschitz and quasi-convex objective functions. In this algorithm, we use quasi-distance in the regularization term and consider the \(\varepsilon \)-approximate solution of the scalarization subproblem as well as the \(\varepsilon \)-subdifferential in the optimality condition of the subproblem. This algorithm is shown to be well-defined. Then, it is proved that each accumulation point, if any, of the sequence generated by the algorithm is a Pareto-Clarke critical point of the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信