{"title":"非交换的巴杰-盖斯准变形","authors":"Michael Brandenbursky, Misha Verbitsky","doi":"10.1093/imrn/rnae119","DOIUrl":null,"url":null,"abstract":"A (non-commutative) Ulam quasimorphism is a map $q$ from a group $\\Gamma $ to a topological group $G$ such that $q(xy)q(y)^{-1}q(x)^{-1}$ belongs to a fixed compact subset of $G$. Generalizing the construction of Barge and Ghys, we build a family of quasimorphisms on a fundamental group of a closed manifold $M$ of negative sectional curvature, taking values in an arbitrary Lie group. This construction, which generalizes the Barge-Ghys quasimorphisms, associates a quasimorphism to any principal $G$-bundle with connection on $M$. Kapovich and Fujiwara have shown that all quasimorphisms taking values in a discrete group can be constructed from group homomorphisms and quasimorphisms taking values in a commutative group. We construct Barge-Ghys type quasimorphisms taking prescribed values on a given subset in $\\Gamma $, producing counterexamples to the Kapovich and Fujiwara theorem for quasimorphisms taking values in a Lie group. Our construction also generalizes a result proven by D. Kazhdan in his paper “On $\\varepsilon $-representations”. Kazhdan has proved that for any $\\varepsilon>0$, there exists an $\\varepsilon $-representation of the fundamental group of a Riemann surface of genus 2 which cannot be $1/10$-approximated by a representation. We generalize his result by constructing an $\\varepsilon $-representation of the fundamental group of a closed manifold of negative sectional curvature taking values in an arbitrary Lie group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative Barge-Ghys Quasimorphisms\",\"authors\":\"Michael Brandenbursky, Misha Verbitsky\",\"doi\":\"10.1093/imrn/rnae119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A (non-commutative) Ulam quasimorphism is a map $q$ from a group $\\\\Gamma $ to a topological group $G$ such that $q(xy)q(y)^{-1}q(x)^{-1}$ belongs to a fixed compact subset of $G$. Generalizing the construction of Barge and Ghys, we build a family of quasimorphisms on a fundamental group of a closed manifold $M$ of negative sectional curvature, taking values in an arbitrary Lie group. This construction, which generalizes the Barge-Ghys quasimorphisms, associates a quasimorphism to any principal $G$-bundle with connection on $M$. Kapovich and Fujiwara have shown that all quasimorphisms taking values in a discrete group can be constructed from group homomorphisms and quasimorphisms taking values in a commutative group. We construct Barge-Ghys type quasimorphisms taking prescribed values on a given subset in $\\\\Gamma $, producing counterexamples to the Kapovich and Fujiwara theorem for quasimorphisms taking values in a Lie group. Our construction also generalizes a result proven by D. Kazhdan in his paper “On $\\\\varepsilon $-representations”. Kazhdan has proved that for any $\\\\varepsilon>0$, there exists an $\\\\varepsilon $-representation of the fundamental group of a Riemann surface of genus 2 which cannot be $1/10$-approximated by a representation. We generalize his result by constructing an $\\\\varepsilon $-representation of the fundamental group of a closed manifold of negative sectional curvature taking values in an arbitrary Lie group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A (non-commutative) Ulam quasimorphism is a map $q$ from a group $\Gamma $ to a topological group $G$ such that $q(xy)q(y)^{-1}q(x)^{-1}$ belongs to a fixed compact subset of $G$. Generalizing the construction of Barge and Ghys, we build a family of quasimorphisms on a fundamental group of a closed manifold $M$ of negative sectional curvature, taking values in an arbitrary Lie group. This construction, which generalizes the Barge-Ghys quasimorphisms, associates a quasimorphism to any principal $G$-bundle with connection on $M$. Kapovich and Fujiwara have shown that all quasimorphisms taking values in a discrete group can be constructed from group homomorphisms and quasimorphisms taking values in a commutative group. We construct Barge-Ghys type quasimorphisms taking prescribed values on a given subset in $\Gamma $, producing counterexamples to the Kapovich and Fujiwara theorem for quasimorphisms taking values in a Lie group. Our construction also generalizes a result proven by D. Kazhdan in his paper “On $\varepsilon $-representations”. Kazhdan has proved that for any $\varepsilon>0$, there exists an $\varepsilon $-representation of the fundamental group of a Riemann surface of genus 2 which cannot be $1/10$-approximated by a representation. We generalize his result by constructing an $\varepsilon $-representation of the fundamental group of a closed manifold of negative sectional curvature taking values in an arbitrary Lie group.