论K3$^{[n]}$型投影超凯勒积分的交映双理自映射

Pub Date : 2024-05-29 DOI:10.1093/imrn/rnae112
Yajnaseni Dutta, Dominique Mattei, Yulieth Prieto-Montañez
{"title":"论K3$^{[n]}$型投影超凯勒积分的交映双理自映射","authors":"Yajnaseni Dutta, Dominique Mattei, Yulieth Prieto-Montañez","doi":"10.1093/imrn/rnae112","DOIUrl":null,"url":null,"abstract":"We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3$^{[n]}$-Type\",\"authors\":\"Yajnaseni Dutta, Dominique Mattei, Yulieth Prieto-Montañez\",\"doi\":\"10.1093/imrn/rnae112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,K3$^{[n]}$型的投影超凯勒流形,如果允许有限阶的非难交映双向自映射,则与 K3 曲面上的稳定(扭曲)相干剪切的模空间同构。受这一结果的启发,我们分析了剪切的模空间的动锥上的反射,并确定它们何时来自双向卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3$^{[n]}$-Type
We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信