{"title":"紧凑与离散量子群在算子系统上的作用","authors":"Joeri De Ro, Lucas Hataishi","doi":"10.1093/imrn/rnae118","DOIUrl":null,"url":null,"abstract":"We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"105 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actions of Compact and Discrete Quantum Groups on Operator Systems\",\"authors\":\"Joeri De Ro, Lucas Hataishi\",\"doi\":\"10.1093/imrn/rnae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae118\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Actions of Compact and Discrete Quantum Groups on Operator Systems
We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.