紧凑与离散量子群在算子系统上的作用

Pub Date : 2024-05-30 DOI:10.1093/imrn/rnae118
Joeri De Ro, Lucas Hataishi
{"title":"紧凑与离散量子群在算子系统上的作用","authors":"Joeri De Ro, Lucas Hataishi","doi":"10.1093/imrn/rnae118","DOIUrl":null,"url":null,"abstract":"We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actions of Compact and Discrete Quantum Groups on Operator Systems\",\"authors\":\"Joeri De Ro, Lucas Hataishi\",\"doi\":\"10.1093/imrn/rnae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了离散或紧凑量子群对算子系统作用的概念,并研究了等变算子系统的注入性。然后,我们证明了等变注入性与相关交叉积的对偶注入性之间的对偶结果。作为应用,我们给出了由离散量子群对算子系统的作用建立的还原交叉积的等变注入包络的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Actions of Compact and Discrete Quantum Groups on Operator Systems
We introduce the notion of an action of a discrete or compact quantum group on an operator system, and study equivariant operator system injectivity. We then prove a duality result that relates equivariant injectivity with dual injectivity of associated crossed products. As an application, we give a description of the equivariant injective envelope of the reduced crossed product built from an action of a discrete quantum group on an operator system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信